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Abstract

Much interesting work has been done in recent years in using PC
clusters to power multipipe graphics displays. Tiled display walls
and CAVE virtual environments are a natural fit with this research.
Examining the many successful system points to problems each
needs to surmount to achieve its objectives. Accordingly, this pa-
per attempts to explore the underlying infrastructure, both in soft-
ware component management and in networking software, needed
to make cluster-based graphics systems easy to create, extend, and
use.

These ideas have been implemented in Syzygy, a toolkit for dis-
tributed graphics used in the Integrated Systems Lab’s 6-sided
CAVE. Two very different frameworks for doing distributed graph-
ics applications have been built using this toolkit, one a distributed
scene graph and the other a method for writing synchronized ap-
plications, are described here. The reuse of basic software compo-
nents improves the maintainability and manageability of the result-
ing software. In addition, new styles of distributed graphics pro-
gramming can be implemented on top of the existing infrastructure
as they become needed.

CR Categories and Subject Descriptors: I.3.m [Computer Graph-
ics]: Miscellaneous; Additional Key Words: Distributed

1 Introduction

In recent years, commodity-based systems have become an at-
tractive platform for visualization. The popularity of 3D video
games has created inexpensive graphics hardware that is surpris-
ingly versatile. While there is still a place for the graphics super-
computers, especially in codes requiring large amounts of com-
munications bandwidth, clusters of commodity PC’s are adequate
for many high-end tasks in scientific visualization and virtual re-
ality. Since economies of scale give commodity systems a better
price/performance ratio than the traditional supercomputers, meet-
ing project requirements using PC’s leads to cost savings.

Consequently, there has been intense interest in learning how to ex-
ploit PC clusters for interactive graphics. A few important types
of displays need multiple screens, each driven at high perfor-
mance. Various flavors of virtual reality, from CAVE immersive
displays [6] to simulators to head-mounted displays, have this re-
quirement. Very high resolution screens can be created via a tiled
display wall, like the PowerWall [21] and more recent cluster-driven
versions that have been produced at Princeton [7], Stanford [12],
UIUC [14], among other locations.

Software design is an important challenge in using PC clusters for
interactive graphics and visualization. A number of excellent sys-
tems have been produced. WireGL, and its successor Chromium,
replace the OpenGL shared library with a stub that sends the draw
commands to connected render nodes [11]. Scalability is achieved
by limiting network traffic, for instance by only sending primitives

Figure 1 Hyperbolic Geometry in the ISL Cube

to the nodes on which they are displayed [4]. The Princeton Om-
nimedia group also has a shared library, DGL, that replaces the
OpenGL shared library and distributes OpenGL commands over the
network [7]. They have also done interesting work in load balanc-
ing for cluster rendering [17], and they have investigated software
methodologies for writing graphics applications that can have mul-
tiple instances running synchronized, one on each render node [5].
Finally, the versatile VR library, VR Juggler, as described in [2] and
[3], has an extension, Net Juggler [15] that allows many VR Juggler
applications to run unaltered on a cluster.

The Integrated Systems Lab at the University of Illinois at Urbana-
Champaign has a six-walled CAVE driven by a PC cluster. The pur-
pose of this structure is to provide an environment both for scientific
visualization and for experiments in human perception. As such,
we need to be able to support a diversity of graphics application
types on our cluster. Furthermore, the cluster-based VR software
we produce must be manageable by researchers in psychology with
a minimal level of technical expertise. The resultant requirements
of high performance, flexibility, and ease of use led to the design of
the Syzygy software used at the ISL to power its six-walled CAVE.

2 The Problem

These successful examples of software design for PC cluster graph-
ics, when taken as a whole, teach two important lessons. First of
all, there are several valid approaches, each best suited to a par-
ticular problem domain. The limited network bandwidth between
nodes, relative to the internal memory bandwidth in a shared mem-
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ory SMP computer, means that some applications can best achieve
high cluster performance with custom communications protocols.
Second, there is a nontrivial software infrastructure common to all.
Application software components deployed in the cluster need to be
managed, possibly across multiple OS platforms, in a simple way.
Finally, many of the networking infrastructure needs are common
across various software designs for distributed graphics.

Designs that replace the OpenGL shared library have the advantage
of excellent software compatibility but can require large amounts of
network bandwidth to function well. On the other hand, approaches
that focus on running synchronized copies of an application, one in-
stance on each render node, have minimal bandwidth requirements
but suffer from reduced software compatibility. The programmer
may need to make modifications to the application’s source code.
For instance, the synchronization may place restrictions on the re-
sources available to the program, like prohibiting threading, or de-
manding that all state change occur in a defined data path.

In this paper, we look at two basic types of distributed graphics ap-
plications. The first is similar to in architecture to WireGL. Here,
a generic rendering program runs on each graphics node, turning
a received data stream into graphics. An application merely needs
to speak to the rendering programs using the appropriate protocol
in order to produce graphics on the cluster. This paper labels this
architecture as client/server. We deviate from X windows terminol-
ogy and label the component that produces the data as the server and
the components that consume the data as the clients. This is intu-
itive for cluster-based graphics since there is a single producer and
many consumers. Others have classified this architecture as data
distribution [5].

The second architecture for distributed graphics applications is to
have multiple copies of an application running synchronized, one
of each of the rendering nodes. In this case, one copy will control
the application, distributing input or other control information to
the other application instances. This paper refers to this architecture
as master/slave, with the master node passing the information to
the slave nodes. Others have classified this architecture as control
distribution [5]. Good examples of this architecture can be found in
Net Juggler or some of the products of the Princeton group.

The first important common infrastructure is networking code.
Messages need to be sent and buffered. Operations on multiple
computers need to be synchronized. Connections between compo-
nents must be managed, preferably transparently to the program-
mer. Heterogeneous systems built from components with differ-
ent architectures should be supported, specifically by providing
a mechanism to translate message contents between different bi-
nary formats. Finally, for performance reasons, it is desirable to be
able to overlap network communications threads with computation
threads. The underlying framework should support this automati-
cally.

The second important part of a common infrastructure is software
component management. The various components comprising the
cluster application need to be launched and killed when the applica-
tion is finished. Components need to be configured in a flexible way
when launched and must be able to form connections in a robust
manner. If components need to be started in a fixed order, depend on
a multitude of configuration files scattered across the cluster nodes,
or cannot tolerate another component crashing, the resulting appli-
cations built from those components will be fragile and difficult to
administer.

In this paper, we describe the Syzygy architecture, starting with
its basic communications infrastructure. We show how this basic
infrastructure is used to build two types of distributed graphics ap-
plications, both a distributed scene graph and a reusable framework

Figure 2 Syzygy Architecture

for building master/slave applications. Next, we show how a basic
distributed operating system can ease the management challenges
of using heterogeneous graphics software on a cluster. Note that all
the software described runs on Win32, Linux, and SGI Irix. This
cross-platform compatibility is achieved by using a modular soft-
ware architecture. The Syzygy architecture is pictured in Figure 2.

3 Communications Infrastructure: Messaging

Several requirements inform the design of Syzygy’s communica-
tions infrastructure. Distributed graphics programs must be able to
be built from components spanning different machine architectures.
Furthermore, no single protocol will cover all distributed graphics
needs efficiently. The programmer needs to be able to define new
communications protocols easily and in a way that is robust with
respect to minor changes.

Also, the programmer should not have to worry about the connec-
tion management tasks that are inevitable in any distributed sys-
tem. A common abstraction in distributed graphics involves hav-
ing a central server feeding updates to clients on the render nodes.
A large part of the server’s job is managing the resulting connec-
tions. Hence, it is especially helpful to have server objects that can
deal with multiple connections, each opening and closing at un-
predictable times. Finally, synchronization is critically important
to distributed graphics. Reality presents a consistent view and the
cluster-based display needs to do so as well.

These requirements are not difficult to meet. A framework for
defining languages can aid in protocol design while, at the same
time, giving the semantic information necessary to do binary for-
mat translation from, for instance, big-endian to little-endian ma-
chines. Objects with connection management functionality can be
designed, as can objects to robustly manage synchronization.

All of the Syzygy components are built on a common communi-
cations infrastructure. This infrastructure is message-based and in-
cludes objects to handle message semantics. Many similar schemes
have been proposed in recent years, including SDDF [1], CORBA’s
IDL, or even the XML schema underlying SOAP. At a fundamental
level, the arDataTemplate object defines the semantics of a particu-
lar type of message, be it an array of vertices being sent to a scene
graph database or a navigation matrix shared across a synchronized
graphics application. Each message type has a name, a numerical
ID, and a collection of fields, each with its own name and ID. The
fields each hold an array of integers, floats, bytes, doubles, or long
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integers.

The arTemplateDictionary object organizes and manages the ar-
DataTemplates into a coherent language for use in a communica-
tions protocol. For instance, the Syzygy distributed scene graph API
is built on top of a language managed by an arTempateDictionary
and comprised of messages whose semantic content is defined by
arDataTemplate objects. Raw data storage, including moving to and
from the byte stream representations useful for network transfer, is
provided by arStructuredData objects. These are initialized by ar-
DataTemplate objects to hold a particular type of message data.
The fundamental message construct exposed to the user is an ar-
StructuredData object, which is used to pass data into many Syzygy
object methods.

Messaging between components of the distributed system is han-
dled by arDataServer and arDataClient objects. These objects han-
dle three basic functions: connection management, data transfer,
and data translation. An arDataServer object is designed to han-
dle many simultaneous connections with arDataClient objects, each
connection involving full-duplex communication. A connection
thread runs automatically in the background, invisible to the appli-
cations programmer, and, as arDataClient objects request connec-
tions with the arDataServer, it adds those connections to a database,
tagging them with both an ID and a program-supplied string. When
an error occurs in a send or receive on one of these connections,
the arDataServer automatically terminates that connection and re-
moves it from the database, invoking a user-defined callback on
disconnect, if such exists. The szgServer, central controller for the
Phleet distributed operating system described later in this paper, is
just a thin wrapper around an arDataServer object.

These objects can transfer either single arStructuredData objects or
buffers of arStructuredData objects between themselves. Single ar-
StructuredData records are better suited to simple messaging while
buffer transfers make more sense for high performance transfers
of graphics information, like, for instance, the updates to a scene
graph database. An arDataServer can send to a particular connected
client, to a list of connected clients, or to all connected clients. The
last mode is very useful since some protocols are naturally coded by
having a controlling object sending the same data to each connected
client. For instance, the Syzygy distributed scene graph works by
collecting scene graph modifications during each frame, sending
them to all connected clients, each of which then uses that informa-
tion to draw its next frame. The arDataServer can also receive ar-
StructuredData messages from the connected clients, passing them
to user-defined callbacks for processing.

Finally, data translation between different machine architectures is
supported at the arDataServer/arDataClient level. For performance
reasons, arStructuredData objects are transferred in binary format,
which obviously presents problems in interoperability. Each end of
a connection between an arDataServer and an arDataClient knows
the native binary format of the other. Consequently, given the se-
mantic information contained in an arDataTemplate, the receiving
object can translate the incoming byte stream representation of an
arStructuredData message into native format. Note that this trans-
lation only occurs if necessary, so that all communications between
machines having the same architecture approximate the efficiency
of a pure memory transfer. By adding this translation functionality,
distributed graphics systems can be built from machines with dif-
ferent architectures, for instance MIPS-based and x86-based com-
puters. While communications between the two will never be max-
imally efficient, certain styles of distributed graphics, like mas-
ter/slave, require very little bandwidth.

4 Commnications Infrastructure: Synchronization

In addition to data manipulation and transmission, distributed
graphics programs require synchronization. Even if the render
nodes are evenly matched in power, different views of a scene will
render at different speeds, destroying the illusion of a unified dis-
play. Consequently, a synchronization call needs to occur immedi-
ately before the graphics buffer swap. Experience shows that this
synchronization can occur over an ethernet network with latencies
of about 1 ms, clearly sufficient for interactive graphics. Of course,
software synchronization is only one piece of the puzzle. The buffer
swap will complete on each render node at the video card’s verti-
cal retrace. If these signals are not synchronized, jitter will occur.
The solution is to either use video cards that accept an external gen-
lock signal, like the Wildcat 4210 boards from 3Dlabs, or to use a
custom genlock solution like SoftGenLock [16]. With genlock and
the Syzygy software, the graphics boards have synchronized ver-
tical retraces and the resulting image is flawless across the cluster
display, even under highly animated conditions. Without genlock,
jitter is apparent but acceptable, once again, even with highly ani-
mated scenes.

Furthermore, in addition to synchronized buffer swaps, the dis-
tributed graphics application depends on synchronized message
consumption. The basic model for distributed graphics is of a server
sending a sequence of messages to multiple rendering objects. Each
message in the sequence corresponds to the information needed to
draw the next frame. One problem with using TCP networking as
a communications fabric is the implicit buffering it does. The com-
pletion of a send call on a TCP socket only means that the data
has been successfully buffered. Consequently, if the software does
not guarantee that rendering objects consume data in synchronized
fashion with its production at the server, views on render nodes can
lose coherence due to different buffering behavior.

Robust synchronization primitives, arBarrierServer and arBarrier-
Client, can be built on top of arDataServer and arDataClient. One
important characteristic for distributed software is fault-tolerance.
Ideally, a synchronization group should be dynamic, with the bar-
rier continuing to function as members enter and leave the group.
In combination with the connection management functionality of
an additional arDataServer object, say an object that serves graph-
ics information, this feature allows us to build a server that can push
synchronized updates to a dynamically changing group of render-
ing clients. This lets the user, for instance, change displays while an
application is running. A program based on the Syzygy distributed
scene graph can start displaying in a CAVE, then move to a display
wall, and end up on a desktop.

The arBarrierServer object operates largely independently of user
intervention. It uses TCP sockets for connection management and
exchanging control information with clients, but it uses UDP sock-
ets for receiving notification that a client is at the barrier and for
broadcasting the barrier release. The programmer simply tells the
arBarrierServer the interface to which it should bind and specifies a
block of ports for the various sockets. After this, calling the object’s
start() method spawns threads that operate the service.

The arBarrierClient object also has relatively few methods. The ob-
ject connects to an arBarrierServer at a specified IP/port address. It
can subsequently operate in one of two ways: either it will automat-
ically join the synchronization group or it will wait until explicitly
told to do so. Once the arBarrierClient has joined the synchroniza-
tion group, it can invoke a barrier by calling its synch() method.
This call first sends a UDP packet to the arBarrierServer and then
blocks while waiting for a broadcast release packet from the ar-
BarrierServer. The arBarrierServer broadcasts this packet when all
clients currently active in its synchronization group have notified it
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that they are waiting at the barrier.

We focus on the case where the arBarrierClient takes explicit action
to join the synchronization group. When the arBarrierClient wishes
to join, it invokes its requestActivation() method, which blocks until
a three-way handshake with the arBarrierServer can be completed.
This call first notifies the arBarrierServer that it wants to become
part of the group. On its side, the arBarrierServer also must explic-
itly accept the pending additions to the synchronization group using
its activatePassiveSockets() method. This method sends the second
round of the handshake to the connected arBarrierClient object and
blocks until it receives the third round. Once the arBarrierClient re-
ceives the second handshake round, still in the requestActivation()
method, it sends the third round to the arBarrierServer and returns.
When the arBarrierServer gets the third round it returns as well. The
arBarrierClient has now joined the synchronization group. The im-
portance of the three-way handshake is that, after completion, each
connected object now knows where the other is in its code, and can
predict what the effects of a client’s synch() call will be.

The case where the arBarrierClient explicitly joins the synchroniza-
tion group is important. It is useful when we want to synchronize
a process that can have components entering and leaving dynami-
cally, as in, for instance, the distributed scene graph’s support for
rendering clients connecting and disconnecting at will while the
application is running. The explicit join also allows us to guaran-
tee that the scene update messages are synchronized in their dis-
tribution to the clients and in their consumption on the clients. To
accomplish this, code on the client needs to know what code is cur-
rently executing on the server and vice versa. The 3-way handshake
described above accomplishes this.

Finally, we describe the arSyncDataServer and arSyncDataClient
objects. The arSyncDataServer combines an arDataServer with an
arBarrierServer to create an object that can perform synchronized
message buffer transfers with connected arSyncDataClient objects,
which are a similar combination of arBarrierClient and arData-
Client. Synchronized message buffer transfers on the server-side,
when matched with synchronized message buffer consumption on
the client-side, forms the abstract basis for many distributed graph-
ics programs. Consequently, this code can be heavily reused.

On the arSyncDataServer side, the object uses double-buffering,
a queuing buffer and a send buffer, to overlap data processing
and network traffic. An application continually sends messages to
an arSyncDataServer embedded within it using the receiveMes-
sage(arStructuredData*) method. These messages are automati-
cally queued into a send buffer in one thread, while another thread
sends the previously queued send buffer to connected clients. When
the connected arSyncDataClients have finished consuming a buffer,
they call their embedded arBarrierClient’s synch() method. With
graphics applications, this occurs at the buffer swap. Once the ar-
BarrierServer object embedded in the arSyncDataServer releases
the barrier, arSyncDataServer swaps buffers and starts sending the
data that had previously accumulated in the old queuing buffer, now
the send buffer, and begins queuing data in the new queue buffer.

The arSyncDataServer can handle stateful protocols. In this case,
a newly connected client needs to have its state synchronized with
that of the server. This is true, for instance, with the Syzygy dis-
tributed scene graph. Upon connection, the current scene graph
state needs to be transferred to the client. This is accomplished by
a program-registered connection callback.

The arSyncDataClient side also uses double-buffering to overlap
processing and network traffic. A receive thread continually fills
the back data buffer with transmitted information. A second con-
sumption thread is continually spinning, first consuming the front
data buffer, using a program-defined callback, and then synchro-

Figure 3 Timing Diagram for Buffer Transfers

nizing using an arBarrierClient object. Once the front data buffer is
consumed and the back data buffer is ready, the buffers swap au-
tomatically, and the consumption loop continues. In the case of a
graphics application, the consumption callback uses the message
buffer to alter internal data structures and then draw the frame us-
ing the new information. See Figure 3 for timing details of these
operations.

5 Client/Server Application Architecture

The above infrastructure is used to simplify experimenting with a
distributed scene graph API for Syzygy. Several distributed scene
graphs have appeared over the years, mainly in the context of
shared virtual environments. Two notable efforts in this direction
are Avango [20] and Repo-3D [13]. Of course, here our focus is dif-
ferent, namely cluster-based graphics. The distributed scene graph
API fits the client/server architecture. A copy of the scene graph
database is manipulated by the application, and generic rendering
clients connect to it, thus maintaining synchronized local copies for
graphics production.

Using the communications toolkit described in the previous section,
one can easily define a protocol for transmitting scene graph infor-
mation from a server database to multiple client databases. Indeed,
connection management, machine architecture independence, syn-
chronization, and message formatting all come for free. Thus, the
developer can focus on implementing functionality. An earlier ver-
sion of the Syzygy scene graph API was detailed in [18]. Pieces
of the current version are described below. It is still rough but is
sufficient for implementing human perception experiments in the
Integrated Systems Lab’s facilities.

Using a distributed scene graph is an excellent way to cut down
the network traffic between the server and the connected rendering
clients. Upon connection, the server can dump its database state
and send it to the newly connected client. Subsequently, keeping
the databases synchronized merely requires sending changes made
to the server’s copy, and these changes naturally map to scene graph
API calls.

The object arGraphicsServer, a subclass of arSyncDataServer,
holds the application’s copy of the scene graph database. At
the most basic level, the application sends the arGraphicsServer
a stream of messages using arGraphicsServer’s receiveMes-
sage(arStructuredData*) method. These messages correspond to
database modifications and are buffered and sent to connected ar-
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GraphicsClient objects, a subclass of arSyncDataClient, after be-
ing used to modify the local database. The received message buffer
is then used to alter the arGraphicsClient’s scene graph database,
keeping it synchronized with the application’s copy. After this syn-
chronization, the arGraphicsClient draws the database, thus com-
pleting the arSyncDataClient’s consumption loop described in the
previous section.

The scene graph database is a tree, with a special root node. Each
node has a type, like texture node, a name, an ID, and a parent. Con-
ceptually, the programmer does two things to the database: creates
nodes and sends them messages based on their ID. Texture nodes,
for instance, can receive messages telling them to load a new tex-
ture. Visibility nodes can receive messages telling them to toggle
the drawing of the sub-tree below them. The scene graph is drawn
via depth-first traversal.

We now enumerate the node types in this simple scene graph API.
Some of these result in drawing, some do not. Drawable nodes in-
clude a colored lines node, a textured triangles node, a colored tri-
angles node, and a text billboard node. Some nodes do not directly
cause drawing but instead provide information used by the draw-
able nodes. These nodes include a texture node, a transform node,
a points node, a bounding sphere node, a visibility node, and a tri-
angles node. Transform nodes put a matrix on the stack, modifying
the rendering of the subtree below it. Points, triangles, and normals
node provide geometry for drawable nodes occurring in the subtree
below them.

For instance, a colored triangles node holds a sequence of ID’s of
triangles to be drawn and a sequence of colors. The ID’s refer to the
nearest ancestor triangles node, which contains an array of point ID
triples, ordered by triangle ID. This, in turn, refers to the nearest
ancestor points node, which contains an array of coordinates or-
dered by point ID. Along with the normals contained in a normals
node, indexed by triangle ID, this suffices to draw the lit triangles.
Similarly, textured triangles nodes contain a sequence of ID’s of
triangles to be drawn along with a packed sequence of texture co-
ordinates. The geometric information is collected as in the colored
triangles node, with the addition that the nearest ancestor texture
node is used to provide the texture.

A graphics API wraps the process of sending raw messages to the
database, in order to make life easier for the programmer. These
commands generate the underlying messages and send them to the
arGraphicsServer. An example of how to attach a collection of 200
textured triangles to a transform matrix whihc is in turn attached
to the root node follows. In each call, the first parameter refers to
the name of the new node and the second parameter refers to the
name of its parent. In the case of the dgPoints, dgTriangles, and
dgTexTriangles commands, the third parameter refers to the number
of elements.

dgTransform("world", "root", matrix);
dgTexture("tex", "world",

"texturefile.ppm");
dgPoints("points", "tex", 600, pointsIDArray,

coordArray);
dgTriangles("tri", "points", 200,

trianglesIDArray, pointsIDArray);
dgTexTriangles("textri", "tri", 200,

trianglesIDArray,textureCoordArray);

When a new node is created, the call returns a node ID. This ID can
subsequently be used to alter the contents of the node. For instance,
suppose a node with ID transformID contains a transformation ma-
trix. This matrix can be changed by a call to:

dgTransform(transformID, matrix);

Figure 4 Distributed Scene Graph Software Components

Furthermore, one can conserve bandwidth on mesh changes by only
sending the vertices that change instead of the whole mesh. This
can be important for highly animated meshes, like the time tunnel
application mentioned in the final section of this paper. To simply
change some of the points in a given mesh, as stored in the node
with ID pointsID, pack the ID’s of the nodes to be changed in an
array pointIDArray and the coordinates into an array pointsCoor-
dArray and issue the following call:

dgPoints(pointsID,numberPoints, pointsIDArray,
pointsCoordArray);

SZGRender is the generic drawing program for this protocol. It
is really just a thin wrapper around an arGraphicsClient object. It
provides configuration services to the arGraphicsClient, using the
Phleet infrastructure described later in this paper. The same Phleet
capabilities are used to make the SZGRender program a manage-
able component of the distributed system, for instance letting it
shutdown or reload its parameters in response to a remote signal.
See Figure 4 for a diagram of the software components active in
this system and the connections between them. This diagram in-
cludes the related distributed operating system components. See the
section on Phleet for an explanation of their function.

6 Master/Slave Application Architecture

The communications infrastructure can also simplify creating an
API for coding master/slave graphics applications. The basic re-
quirement of transferring messages between a server and several
rendering clients is the same as in the distributed scene graph, as
is the need for this operation to be synchronized with the drawing
on the render nodes and for that drawing to occur in lockstep. Fur-
thermore, by reusing the infrastructure, we gain certain benefits for
free, namely the ability to add and remove slaves dynamically. This
lets us add or even change displays while the application is running.

The master/slave application architecture is realized by an arServer-
Framework object, which, in turn, is built directly on top of arSync-
DataServer and arSyncDataClient objects. An application registers
various callbacks with the arServerFramework, sets a few flags, like
whether this particular instance will act as a master or a slave, then
calls the object’s start() method, at which point control passes per-
manently into the arServerFramework object’s hands. If the object
acts as a master, it activates an arSyncDataServer, but if the object
acts as a slave, it uses an arSyncDataClient. The various callbacks
that can be registered are listed below.
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void sendMessage(arStructuredData*);
void receiveMessage(arStructuredData*);
void updateState();
void draw();

The arServerFramework event loop is different depending upon
whether or not the object has been started as a master or a slave. If
it has been started as a slave, the event loop is recieveMessage, fol-
lowed by updateState, then draw. If it has been started as a master,
the event loop is sendMessage, the updateState, and finally draw.
Note that all synchronization considerations now occur transpar-
ently to the programmer, and in basically the same manner as in the
raw arSyncDataServer and arSyncDataClient pair described in the
communications layer section.

To use the arServerFramework object, the programmer defines a
simple language, consisting of one type of data record. The ar-
ServerFramework object passes a pointer to an empty arStructured-
Data suitable for holding such data into the sendMessage call-
back. The application then has the responsibility to fill it with suit-
able data, possibly depending on the state of I/O devices, the cur-
rent timestamp, or other considerations, before returning. The ar-
ServerFramework object then sends this to all connected clients.
On each slave instance of the application, the local arServerFrame-
work object receives the message and passes it into the registered
receiveMessage callback. Here, the application can decode the re-
ceived message and transfer its contents into local storage.

Next, in both modes of operation of the arServerFramework object,
an updateState callback occurs, allowing the program to perform
an action on the transferred information, if necessary. Once the in-
formation is so processed, the next frame can be safely drawn. The
view, for instance which CAVE wall, is configured via Phleet, as
outlined in the next section, and routines for managing stereo and
calculating view frusta are transparent to the programmer.

7 Phleet, A Distributed Operating System

This distributed operating system work has similarities with the
Globus [8] and Legion [10] projects. However, these systems at-
tempt to provide infrastructure for supercomputing grids instead of
PC clusters.

Two programs form the backbone of the Phleet system, szgServer
and szgd. The szgServer controls the distributed operating system.
It is built directly on top of an arDataServer object, thus leveraging
the communications infrastructure code base. Every software com-
ponent in the system contains an arSZGClient object that connects
to the szgServer. As for szgd, this program is a remote execution
daemon with uniform operation across Unix and Win32. Typical
operation of a Syzygy system has a copy of szgd running on each
computer in the cluster and a single controlling copy of szgServer.

The szgServer performs three functions. First, it holds a database of
configuration parameters. Second, it facilitates message transmis-
sion between separate components in the distributed system. Third,
it keeps a registry of all running Syzygy software components. This
simple functionality suffices to mimic many of an operating sys-
tem’s standard functions.

A configuration parameter is a 4-tuple of strings, the first a com-
puter name, the second a parameter group, the third a parameter
name, and the fourth a parameter value. For instance, some param-
eters for a VR rendering program are displayed in Figure 5.

In this example, we show partial configuration information for two
render nodes. The computer rendernode1 is displaying the CAVE’s
front wall, is running in stereo, is showing a window with reso-
lution 640 by 480, and is connecting to IP address 192.168.0.1 at

(rendernode1,SZG_RENDER,wall,front)
(rendernode1,SZG_RENDER,stereo,true)
(rendernode1,SZG_RENDER,size,640/480)
(rendernode1,SZG_RENDER,geometry_IP,192.168.0.1)
(rendernode1,SZG_RENDER,geometry_port,10000)
(rendernode2,SZG_RENDER,wall,right)
(rendernode2,SZG_RENDER,stereo,true)
(rendernode2,SZG_RENDER,size,640/480)
(rendernode2,SZG_RENDER,geometry_IP,192.168.0.1)
(rendernode2,SZG_RENDER,geometry_port,10000)

Figure 5 Sample Phleet Database Parameters

void arSZGClient::setParameter(string computer,
string group,
string parameter,
string value)

string arSZGClient::getParameter(string computer,
string group,
string parameter)

string arSZGClient::getProcessList()
void arSZGClient::sendMessage(string messageType,

string messageBody,
int destinationID)

Figure 6 arSZGClient Methods

port 10000 to receive geometry information for display. The com-
puter rendernode2 is configured similarly except that it displays the
CAVE’s right wall.

The szgServer can also transfer simple messages between Syzygy
programs. These messages are a 2-tuple of strings, the first be-
ing the message type and the second being the message body.
Every Syzygy software component understands two messages,
(reload, NULL) and (quit, NULL), where the first causes the com-
ponent to reload its parameters from the database and the second
causes the component to stop operation. The szgd program also un-
derstands an (exec, < program >) message that causes it to attempt
to start a new process with the named executable.

Finally, the szgServer keeps a registry of connected Syzygy soft-
ware components. Every Syzygy component has an arSZGClient
object. On start-up, the arSZGClient opens a network connect to the
szgServer and registers itself with a descriptive label. The szgServer
assigns the connected client a numerical ID. This ID is the basis of
routing messages from one Syzygy software component to another.
Furthermore, the software component registry includes information
about the computers on which the computers run.

What follows is a sample dump of a component registry, each line
starting with computer name, followed by program name, followed
by program ID. This particular listing shows an application program
running on computer controlnode which is displaying its graphical
output via two instances of the rendering program SZGRender, one
running on rendernode1 and the other running on rendernode2.

rendernode1/szgd/1
rendernode2/szgd/2
controlnode/szgd/3
rendernode1/SZGRender/5
rendernode2/SZGRender/6
controlnode/application/23

The arSZGClient object has a simple API that enables it to control
the system. This is displayed in Figure 6.

The setParameter method allows the arSZGClient object to set a pa-
rameter tuple in the database residing in the szgServer. The getPa-

6



Networking and Management Frameworks for Cluster-Based Graphics 7

rameter method allows the object to query that database. By pass-
ing the string ”NULL” for the first parameter, the object will re-
turn a parameter value corresponding to the computer on which the
method executed. This is the most common call type and is used
by Syzygy components in their configuration phase. Many param-
eter values depend on the host computer. For instance, the tile in
a cluster-driven tiled display or the wall in a cluster-driven CAVE.
Referring to a particular computer in the getParameter method is
usually reserved for Syzygy systems programming.

The getProcessList call enables the arSZGClient object to access
the registry of the running Syzygy components and, from this in-
formation, allows it to determine the ID of a particular software
component, as identified by component name and host computer.
Finally, the sendMessage method allows the arSZGClient object to
use the szgServer’s simple messaging API.

The user needs to be able to manage the system from the command
line. Very simple programs that wrap the various methods of ar-
SZGClient can provide that functionality.

dls
dget <computer> <group> <parameter>
dset <computer> <group> <parameter> <value>
dbatch <file>
dex <computer> <executable>
dkill <computer> <name>

The command dls displays the currently running Syzygy software
components. The commands dget and dset are wrappers around the
getParameter and setParameter methods of arSZGClient. The user
can set a large number of parameters at once by sending an ap-
propriately formatted text file through dbatch. Also, an executable
can be remotely launched via the dex command and killed via the
dkill command. Together, these functions provide the functional-
ity required to control the distributed system. Importantly, they can
be used as components of scripts, allowing complex control of the
distributed system’s behavior.

To speed deployment, the arSZGClient objects automatically dis-
cover and connect to the szgServer. When an arSZGClient object
launches, it first checks a cached configuration file to find the IP
address and port number where the szgServer listens for connec-
tions. If this file does not exist, it sends a broadcast packet to a
well-known port. The szgServer continually listens on this port and
responds with the IP/port pair the arSZGClient needs to make a
connection.

Finally, we conclude the section by showing how this system can
be used to manage cluster-based graphics programs. To begin, we
have szgd daemons running on the various nodes of our system, in
addition to a single szgServer. The first example application uses
the client/server model. The geometry server object embedded in
the application controls a scene graph database that is synchronized
with copies running in generic rendering clients, in this case the
SZGRender program, that handle the display.

A simple script launches the components on each node in the sys-
tem. For simplicity we assume 2 render nodes.

dex controlnode application
dex rendernode1 SZGRender
dex rendernode2 SZGRender

When the various components launch, they connect to the szgServer
via arSZGClient objects, download parameters from the parameter
database, and use these parameters to configure themselves accord-
ing to the node on which they reside. Scene graph updates transfer

Figure 7 Visualization of MPI Code

from the application to the SZGRender programs using direct net-
work connections, as set up using parameters from the database.
Unlike a CORBA architecture, where all messages in the system
pass through an ORB, only operating system level messages pass
through the szgServer. Once the components have been configured,
they communicate with each other directly.

It is possible to reconfigure the system while it is running. As a sim-
ple example, suppose the user wants to change the view displayed
by a render node in a CAVE-like environment. The user then al-
ters the appropriate parameter in the database and sends the render
program a reload message. In response, the render program reloads
its parameters from the database and begins displaying the changed
view.

To stop the application, we execute the following script, which
sends kill messages to each of the components.

dkill controlnode application
dkill rendernode1 SZGRender
dkill rendernode2 SZGRender

A similar process can be used to start a master/slave application. In
this case, we execute an application copy on each render node. A
database parameter, SZG RENDER/master, is used to indicate the
node that will control the synchronized run. Different views for the
different displays are configured in the same way as the previous
application. In this way, the uniform model of software component
management aids in moving between applications done in different
programming styles and simplifies the overall administration prob-
lem.

8 Practical Experiences

We conclude by briefly describing some experiences using this
framework to implement applications. First, Paul Rajlich has mod-
ified Steve Taylor’s open source Quake 3 level viewer to make it
suitable for displaying on virtual reality hardware. The resulting
software, CAVE Quake 3, was easy to port to Syzygy and hence
into the ISL’s 6-walled CAVE. Since the program’s draw state only
depends on a navigation matrix and a timestamp, the master/slave
architecture was chosen to do the port.

We also took a scientfic visualization designed for an SGI-driven
CAVE and ported it to Syzygy. The ”time tunnel” pictured in Fig-
ure 7 is a metaphor designed by the Pablo group at UIUC to visual-
ize the behavior of MPI numerical analysis codes [19]. Events are

7
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pictured as lines, with the long axis of the cylinder representing
time. Messages passed between processors are visible as chords
cutting through the cylinder’s interior. As new events occur, they
force old events to scroll away, eventually disappearing. While the
line set is thus highly animated, only a small percentage of lines
change per frame. Consequently, this is efficiently implemented as a
Syzygy distributed scene graph, using the partial mesh update mes-
sages mentioned previously in this paper. The data pictured here is
courtesy of CSAR, the Center for Study of Advanced Rockets at
UIUC.

Another scientific visualization is that of hyperbolic geometry [9],
pictured in Figure 1. This visualization is the work of George Fran-
cis, using data provided by the Geometry Center at the University of
Minnesota. The view only depends on a navigation matrix so this
application is efficiently implemented in the master/slave frame-
work.

Finally, we have implemented a psychology experiment that stud-
ies how subjects navigate a complicated scene, in this case a room
with numerous pictures on the walls, displayed to them in a head-
mounted display. This environment was implemented using the
Syzygy scene graph API.

9 How to Get the Software

The Integrated Systems Laboratory website, www.isl.uiuc.edu, has
source code for the core software, plus selected demos. Documen-
tation about the various software components, including how to get
a system up and running quickly, is also available.
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