
A Software System for Inexpensive VR via Graphics Clusters

Benjamin Schaeffer

Integrated Systems Lab
Beckman Institute

University of Illinois
Urbana, IL 61801

Abstract

A scene graph API designed for tightly-coupled distributed 3D
graphics is presented. When augmented with other software, like
that providing network synchronization functions, this code forms
the basis of the Distributed Graphics Database (DGD) system. Ex-
perience shows this system is suitable for driving VR displays, pro-
viding an inexpensive alternative to SGI computers. We explore ap-
proaches to networked graphics and motivate the choice of a scene
graph API.

We explore applications of this system using commodity PCs over
10Mbps LANs. In particular, we describe experiences driving a
head-mounted display with a 3 PC cluster, the system in question
being used to provide an interactive virtual environment for human
factors research. We also examine the potential for such inexpensive
VR systems to do scientific visualization. Reasonably demanding
examples are presented. Additionally, we give benchmarks com-
paring the system’s performance on these examples to that of GLX,
including information about data throughput.

CR Categories and Subject Descriptors: I.3.m [Computer Graph-
ics]: Miscellaneous; Additional Key Words: Distributed

1 Motivation

This paper focuses on applications of multiple display systems
to virtual reality, especially the scenario where two mono video
streams need to be generated for a head-mounted display. In many
ways, this is the simplest case, requiring the least complicated hard-
ware solution. In contrast, displaying active stereo using images
from multiple PCs requires each PC to have a video card capable of
receiving an external genlock signal.

Still, the architecture presented can be generalized to such VR sys-
tems. For instance, in the networked PC case, the graphics clients
on each rendering computer could be easily modified to display im-
ages using active stereo, external genlock signals would synchro-
nize the vertical refreshes so that an intelligible active stereo image
would show across all the displays, and these displays would have
consistency maintained via networked synchronization functions.

A compelling reason to examine different architectures for mul-
tiple display systemsis the broad cost range they span. Such sys-
tems driven by PC clusters can be between one and two orders of
magnitude less expensive than systems based on a graphics super-
computer. As such, cluster-based solutions have the potential to put
high-performance VR within the reach of more researchers. Going
even further in this direction, with the right software, low-end PC
clusters, using slow networks, can give surprisingly good perfor-
mance. Instead of a dedicated VR machine, it is possible to take
random computers from around the lab, already connected by the
lab’s LAN, string some additional video cabling and get a new dis-
play system.

Since software is the primary obstacle to constructing such sys-
tems, this paper presents a software project, the Distributed Graph-
ics Database (DGD) system, whose aim is to produce reasonable
networked graphics performance on low-end PC systems.

Before discussing the software architecture and implementation, we
discuss the uses of multiple display systems and their hardware re-
quirements, making an argument for the use of cluster-based solu-
tions. We then conduct an analysis of existing methods for doing
computer graphics over the network. This motivates the design of
the DGD system, notably its use of a scene graph API. AFter de-
scribing the DGD system, we close with some benchmarks com-
paring it to GLX for two nontrivial scientific visualizations.

The genesis of this research was a desire to build an efficient, low-
cost system for providing left-eye/ right-eye views for an HMD.
We needed to provide a virtual environment for a psychology ex-
periment studying the way subjects navigate around complex envi-
ronments. No SGI computers were available to be dedicated to this
purpose and funds were limited. In the end, a workable system was
built for about $3000.

2 Overview

Many types of graphics displays involve more than one image.
Head-mounted displays need both a right-eye and a left-eye image.
Video walls can have anywhere from 4 to 100 screens. CAVE-like
immersive environments involve 4 to 6 projectors [4]. Since there
is likely no limit to the hunger for more immersive displays with
higher and higher resolutions, multiple image displays will become
more and more common.

There are three basic system architectures for a multiple display
system. The simplest possibility is to split the video signal and send
the various pieces to an array of monitors. This approach is used
for most public video walls. Unfortunately, the intrinsic resolution
of the image remains the same, making this method useful when
the only desired outcome is a gigantic video image, but not useful
when higher resolution is desired or the display, like a CAVE, is
nonplanar.

Another possibility is to have a single powerful computer with mul-
tiple graphics cards. This approach places heavy stress on the com-
puter. At the high end, current CAVE systems or high resolution
video walls are often driven by SGI Onyx2 computers with 4, 6, or
even more InfiniteReality2 boards. On the low end, graphics design
professionals commonly work with multiheaded PCs.

Unfortunately, complicated 3D scenes need significant CPU time
and bus bandwidth to render with acceptable performance. A good
rule of thumb is to have one more CPU than the number of graphics
cards. This makes suitable computers, even PCs, very expensive.
Single processor motherboards are cheap. Dual processor ones are
not, and quad processor boards are even worse. Also, only one AGP
slot exists in current PC motherboards. Since AGP overcomes per-

A Software System for Inexpensive VR via Graphics Clusters 2

formance limitations associated with the PCI bus, this casts doubt
on the ability of commodity PC motherboards to deliver peak per-
formance across multiple graphics cards.

The final basic architecture is to use networked computers, each
driving a subset of the available screens. Initial CAVEs, for in-
stance, used this model as early Onyx computers could only drive
two graphics boards. This methodology is very cost-effective when
using networked commodity PCs, each holding a single graphics
card. A notable project taking this perspective is the Princeton Dis-
play Wall [5]. There, researchers are investigating rendering images
across 8 Windows NT PCs connected by Myrinet. Other projects,
such as the Stanford Interactive Mural [6], are using Linux PCs in
similar ways.

Conceptually speaking, each display PC becomes a network appli-
ance provding graphics services. The obstacles now become ones of
software. Applications need to be designed so that network band-
width can be minimized. While gigabit networking technologies are
commonly available, these are still costly compared to 100Mbps
ethernet. A reasonable goal is to see how far one can go with com-
monly available hardware. Ideally, a hobbyist should be able to take
several standard boxes sitting around the house, connect them with
ethernet, and have a small-scale graphics supercomputer.

In addition to bandwidth issues, another motivating factor for chos-
ing networking technologies like Myrinet is their low latency. Mul-
tiple screen displays, especially those constructed from heteroge-
neous components, need to be coordinated. For instance, image up-
dates need to be synchronized. It turns out that TCP/IP over eth-
ernet can easily support 50 synchronizations per second using the
network synchronization software developed for the DGD system,
which is sufficient for most purposes. This is fortunate, since it
means that a quality visual experience can be produced with com-
mon hardware.

Other software issues include portability, flexibility, and modular-
ity. Keeping overall costs in mind, systems should be deployable
using whatever components exist in the lab, be they Linux, SGI,
or Windows. Furthermore, heterogeneous display systems should
be no more troublesome than homogenous ones. The system needs
to be dynamically reconfigurable, so that more components can be
added on the fly, and robust, so that failure of a display component
will not effect the operation of the whole. As networked compo-
nents are developed, servers and clients need to be startable in any
order and immune to crashes of remote systems.

Given our goal of constructing a flexible, low-cost system, a cluster
of commodity PCs connected by ethernet is the right platform to
pursue. The hardware components are ubiquitous, and the ability to
retask individual PCs for other uses adds to the value of the sys-
tem. Indeed, the infrastructure might already exist in a given locale,
with only software and display devices needing deployment before
a visualization center can be created. We focus on this hardware
architecture for the rest of the paper.

3 Closely Related Research

There are two areas of active research that touch on the topic of
this paper. First, research in distributed virtual environments has
received much interest recently. Two systems deserve special men-
tion: Avango [12] and Repo-3D [7]. Both provide a software ar-
chitecture for sharing scene graph information between nodes in a
networked virtual environment. In that, they are similar to the DGD
system described in this paper, which also provides a transparent
mechanism for sharing a scene graph between multiple processes
over a network. The main difference between the research in dis-
tributed VEs and the research in cluster-based VR presented in this

paper is the degree of coupling between the computers participating
in the simulation. The cluster-based VR solution requires a tightly
coupled system that can effectively behave as one box.

The second related area of active research is in distributed render-
ing. Here an especially interesting project is WireGL [3], as pursued
by the Stanford Interactive Mural group. In this case, an OpenGL
wrapper library is created that distributes OpenGL commands over
a network to rendering clients. WireGL also does caching to reduce
network traffic, a critical optimization as the true bottleneck to dis-
tributed graphics is the network bandwidth. While the cluster-based
VR research described in this paper also describes a tightly-coupled
distributed graphics system, this research differs in that it is directed
towards a VR system and also in that it investigates a scene graph
API. We hope to demonstrate that a scene graph API is suitable for
highly animated networked displays.

4 Various Existing Software Architectures

The DGD system chooses a scene graph API over an OpenGL-style
API. It also broadcasts graphics from a central server to dumb dis-
play clients. In this section, we attempt to demonstrate how band-
width considerations and software engineering issues combine to
motivate these choices.

There are two basic approaches to running an graphics application
across multiple computers. The first is to modify the application so
that it runs on each display computer. The second is to modify its
graphics routines so that these broadcast graphics information to
the display computers. Each approach has its advantages and disad-
vantages.

Running multiple copies of the application will potentially yield
better performance, depending on the usage patterns of the applica-
tion. For instance, a code that animates a large polygonal mesh, with
every vertex changing position each frame, will likely run better as
”multiple copies” than by broadcasting graphics information. After
all, the limiting factor is network bandwidth. Graphics bandwidth
over the AGP bus, in rendering lit polygons with a consumer graph-
ics card (GeForce) can easily hit 200 Mbps. A simple architecture
where a server redundantly sends information to multiple clients
would thus max out at 3-5 clients, even given 1 Gbps networking
technology.

Various tricks can be played to wring more out of the interconnect,
like having a tree of rebroadcasting nodes or switching topologies
of varying degrees of sophistication, but bandwidth is always going
to be a problem. This is especially significant in light of the fact
that we want to be able to deploy high performance solutions over
consumer technologies, and moveover want to be able to flexibly
deploy in a variety of situations. By running ”multiple copies”, we
sidestep the bandwidth issue associated with broadcasting display
information.

The ”multiple copies” approach does, however, have disadvantages.
For instance, there is the problem of portability. Under the broad-
casting model, the display machines merely need to run clients that
understand the graphics protocol spoken by the controlling applica-
tion. Under the ”multiple copies” model, the application itself needs
to be able to run on the display computers. Since the majority of
boxes in the system are likely to be display boxes, it is advantageous
to impose as few constraints as possible on these. For instance, we
might be using PCs and midway through the project decide that
Windows NT offers a better driver/ card availability situation than
Linux. Under the broadcast model, it will be much easier to make
such a transition than under the ”multiple copies” model. Similarly,
the broadcast model allows us to use a heterogeneous system, that
is relatively loosely coupled.

2

A Software System for Inexpensive VR via Graphics Clusters 3

Other disadvantages of the ”multiple copies” approach are I/O and
synchronization. Any display technology spanning multiple boxes
requires display synchronization. However, to maintain consistency
of the world, the ”multiple copies” model requires that we add com-
pute synchronization to our application. Also, device drivers need
to be written to broadcast user input to the various application in-
stances. Finally, any issues with retrieving application-specific data
like configuration files, data files, or distributing an incoming net-
work data stream need to be addressed. In general, the problem with
the ”multiple copies” approach is in maintaining a consistent state
across the multiple application instances.

Note that the ”multiple copies” model is already in heavy use in
the commercial world for graphics-intensive internet gaming like
Quake Arena. While one computer in the game will act as a server,
it coordinates relatively low-bandwidth information like character
location. Each copy runs the world from internal data structures.
The analogy is imperfect since, for instance, the various computers
do not collaborate to produce a single coherent view of the world
nor do they attempt to deal with the issues of I/O broadcasting
and synchronization. Still, the architecture is similar, and, since the
main attraction of running multiple copies of the application is in
reducing communications bandwidth, it is not surprising that mul-
tiplayer internet games are structured according to this paradigm.

The main advantage of the broadcast model is the way it seperates
the controlling application from the display cluster. This gives us
more flexibility in the design of our display system. It also poten-
tially impacts the portability of an application to the new display
device. Under this model, one confines rewrites of the application
to the graphics subsystem, instead of the whole application, as is
basically inevitable in the ”multiple copies” model. Furthermore,
this allows for dynamic reconfiguration of the display device, with-
out disturbing the running application. Such might be convenient if
one wanted to add a head-mounted display for seperate viewing of
a world already displayed on a video wall. Similarly, this would be
effective for multi-participant shared virtual worlds.

The main disadvantage of the broadcast model is its potentially
higher bandwidth requirements over the ”multiple copies” model.
Since we are interested in solutions that will provide high perfor-
mance even over common consumer technologies, this is problem-
atic. Network bandwidth and PCI bus bandwidth are clearly the
limiting factors in distributed graphics. Still, via clever design of
a broadcast system, one can take steps to minimize the network
traffic for a broad class of applications. While moving every vertex
every frame will never be suited to a broadcast model, this is, in
fact, not the common case.

The additional flexibility mentioned above was an important factor
in deciding to base the DGD system on a broadcast model. While
there is some concern about bandwidth utilization, many VR appli-
cations change relatively little scene information per frame, possi-
bly even just the viewing matrix or, in the case where objects in the
scene are being manipulated, the transformation matrix of a sin-
gle object. Indeed, an important class of scientific visualizations
changes only small percentages of the on-screen vertices per frame.
The DGD system is designed to take advantage of this fact to min-
imize the amount of data sent over the network. Later in this paper,
we present two pertinent examples, namely a time tunnel visualiza-
tion of a parallel computer and a simulated visualization of network
traffic averages over a thousand nodes.

Approaches that follow the broadcast model can be differentited by
the kind of information they broadcast, be it pixel or graphics prim-
itives, and the degree to which screen state information is retained
on the display device. These categories determine the bandwidth
needs of the applications, and, since communications bandwidth is
almost certainly a bottleneck on the high performance end, they de-

Figure 1 Architecture Classification

termine the overall efficiency of a given application.

Consider the type of data sent to draw each frame. There is both
an immediate mode approach where complete information to draw
each frame is sent from a server (or client if one prefers X termi-
nology), and a retained approach, where the rendering computers
hold most information necessary to draw the frame and receive only
small amounts of coordination from a central server or each other.
Both modes modes have variations based on the type of data sent,
be it pixels or graphics primitives.

There are two good examples of immediate mode pixel broad-
cast. The first is a ubiquitous one, streaming video. The second is
more exotic. Samanta et al. describe a parallel rendering system
where a cluster of computers each cooperate in rendering part of
a geometry-intensive scene, sending blocks of pixels to a single
computer for display [10]. Note that neither example attempts to
fill multiple high resolution screens, for fairly obvious reasons. Ig-
noring compression, sending 20 frames per second of 24-bit color
1024x768 images takes nearly 50 MB/second of bandwidth, putting
us into the realm of gigabit networking technologies. Consequently,
it seems unlikely that current technology will be useful for broad-
casting multiple screens worth of information at frame rates of in-
terest. This consideration eliminated pixel broadcast from consid-
eration during the design phase of the DGD system.

A good example of retained mode pixel broadcast is VNC [9]. A
large VNC virtual desktop can be broadcast to VNC clients on dis-
play machines to produce a unified high resolution display. A dis-
advantage to this method is the relatively large bandwidth required,
though it has the advantage of being portable over a wide variety
of display devices and compatible with existing software. VNC op-
erates in retained mode because it does not rebroadcast every pixel
every frame, just those that corresponding to changing areas of the
desktop.

X windows provides an example of a system that sends graphics
primitives over the network and works largely in retained mode.
An X server can support multiple attached displays, so it is pos-
sible to display a very large desktop on a single computer. This
would, for example, be the case with Onyx2-powered video walls.
Since clients send display information to a single X server and the
X server cannot be naturally run across multiple machines, it is not
obvious how to get a large X display running across multiple net-
worked displays. One approach would be to follow work by the
Princeton Display Wall group in producing a large Windows desk-
top [5]. They create a device driver which distributes graphics prim-
itives across the display machines in the cluster.

3

A Software System for Inexpensive VR via Graphics Clusters 4

GLX gives an example of a largely immediate mode system that
broadcasts graphics primitives over the network. WireGL adds
more retained mode features to GLX and creates the possibility of
having multiple rendering devices connected to a single application.
Still, the ability of WireGL to operate in retained mode is limited
by its OpenGL roots, raising potential issues of network usage.

In contrast, PHIGS/ PEX is a system that displays 3D images across
the network using retained mode. Unfortuantely, like GLX, it is
adapted to display on a single target machine. PHIGS provides
database functionality for the 3D scene so that the scene can be
altered by altering portions of the databse. PEX, the PHIGS X ex-
tensions, provide the ability to transmit PHIGS commands over the
network, allowing a database to be built on the display side of the
network connection.

Since concerns about flexibility constrain us to use the broadcast
model for the DGD graphics system, we need to be very careful
about use of the available network resources. Retained mode graph-
ics systems, where only the scene changes are sent over the net-
work, offer the best network characteristics. Furthermore, we can
further reduce network usage by chosing high level primitives. This
is the approach taken by the DGD system. In many ways, our sys-
tem is conceptually closest to PEX, adding the capability for ren-
dering by multiple boxes.

5 Software Architecture Used in this Project

The most important goals of this project were to produce a readily
portable display system, that could run on heterogeneous hardware,
that could be flexibly reconfigured, and that would yield good per-
formance on common consumer hardware. Consequently, a broad-
cast model using a retained scene database on the display side
seemed most appropriate. The scene database resides on both the
geometry server and the display client. This database is altered by
a stream of data packets, corresponding to a simple graphics lan-
guage. When a display client connects to the geometry server, the
server sends the current state across the wire to the new view.

As alterations to the scene are made, these are relayed to the con-
nected clients. Synchronization of screen refreshes is handled by
a seperate barrier server/ barrier client pair, communicating using
the same infrastructure as in the graphics client/ server pair. In each
case, clients and servers can be started in any order and new clients
can join display groupings and leave display groupings dynamically
without disrupting the visualization. The display client is designed
to run permanently. Conceptually, it turns the display computer into
a network appliance for displaying 3D graphics. After the geome-
try server quits, it reverts to a waiting mode until a new geometry
server connects.

Part of the challenge of building this system is designing the wire
protocol that supports the Distributed Graphics Database. Since, as
a rule, the transmitted records are complex, representing a variety of
high level graphics concepts, and must be transparently transmitted
between a wide variety of machines, with consequent attention paid
to data format conversion, there needs to be a semantic abstraction
layer between the data and the programmer. This facilitates rapid
prototyping of the communication records and keeps the program-
mer, once the data communications protocol has been written, from
needing to consider the details of how complex data is transmitted.
Instead of the byte stream given by sockets, we have a stream of
structured data records of various types. The component fulfilling
this function in the DGD system is the Complex Data Communica-
tion Language, or CDCL.

While communications libraries like MPI have means of transmit-
ting structured data, the CDCL library has methods for manipulat-

Figure 2 DGD Software Architecture

ing semantics in a high level fashion, thus making programs more
intelligible and maintainable. The semantics of a particular data
type is stored in a data template object. Dictionaries of data tem-
plates, as would occur in a complete protocol, can be defined and
manipulated, and individual record fields can be accessed via se-
mantic designations. This is similar, for instance, to the data ab-
stractions provided by CORBA or any number of other projects,
like in Motif widget definitions.

However, here the CDCL library provides only the minimum func-
tionality necessary to transfer a stream of structured data, with the
added ability of the user to perform semantic manipulations. In
spirit, it is very similar to the SDDF data format developed by the
Pablo group [1], except that it is a very small library and provides
network communication functionality that the Pablo system pro-
vides only via an additional library, Autopilot, that runs on top of
Globus [8]. The CDCL library has the advantage of being indepen-
dent of any other toolkit. This plus its small size makes it easy to
port, a very important consideration.

A language for manipulating the Distributed Graphics Database is
built on top of the CDCL protocol. The DGD language is a collec-
tion of data records that specify changes to a database, either creat-
ing a new entity or modifying an existing entity. The records in the
database are arranged in a tree and are associated with both a name
and an ID. Not every record is drawable. This allows easy expand-
ability of the graphics primitives without changing the records of
the language. For instance, instead of having a triangles record, con-
taining information about vertices, normals, and colors, the DGD
language has vertex records, normal records, and color records.
The color record is drawable and refers to its ancestor nodes in the
database tree for normals and vertices.

In the example of Figure 3, a mesh of colored triangles is attached
to the ”world” node in a DGD database. each record is created by
a call to a utility function, like makePointsData (...), and is sent to
the database via the alter (...) method. In each utility function call,
the second field refers to the name of the new node to be created
and the third field refers to the parent name. In this case, a branch
of four nodes hangs from the ”world” node, terminating in the node
”mesh colors”. The ”mesh points” node stores a collection of point
positions keyed by ID. Similarly, the ”mesh triangles” node stores
a collection of point ID triples, keyed by their own ID and refering
to point data stored in its nearest ancestor point node. The ”mesh
normals” and ”mesh colors” nodes store normal and color informa-
tion respectively keyed by triangle IDs, where these IDs refer to
triangles stored in the nearest ancestor triangle node.

4

A Software System for Inexpensive VR via Graphics Clusters 5

theData = theDatabase->makePointsData
(NULL,"mesh points",0,"world",
numberPoints,pointIDs,pointPositions);

theDatabase->alter(theData);

theData = theDatabase->makeTrianglesData
(NULL,"mesh triangles",0,"mesh points",
numberTriangles,triangleIDs,
vertices);

theDatabase->alter(theData);

theData = theDatabase->makeNormalsData
(NULL,"mesh normals",0,"mesh triangles",
numberTriangles,triangleIDs,normals);

theDatabase->alter(theData);

theData = theDatabase->makeColTrianglesData
(NULL,"mesh colors",0,"mesh normals",
numberTriangles,triangleIDs,colors);

theDatabase->alter(theData);

Figure 3 Code to Create Triangle Set

theData = theDatabase->makePointsData
(NULL,"",pointNodeID,"",
numberPoints,pointIDs,pointPositions);

theDatabase->alter(theData);

Figure 4 Code to Alter a Point Set

Nodes in the DGD database can be editted or deleted after creation.
Suppose we want to animate a triangle mesh by moving the ver-
tices. This is accomplished by sending a DGD record to the points
node in question. We can query the database to get the node’s ID,
”pointNodeID”, and then, with the IDs of the points to be modi-
fied in the array ”pointIDs” and the corresponding new positions
in the array ”pointPositions”, we issue the command in Figure 4 to
perform the modification.

By making each record of the DGD language a self-contained
database modification, we achieve three useful properties. First, the
DGD language is inherently a streaming language. Streaming lan-
guages are important for sending complex 3D animations over low
bandwidth connections like the internet. Secondly, two instances of
a database can be kept synchronized by ensuring that they receive
the same stream of DGD language records. This is critical for large
scale displays powered by multiple rendering CPUs. Each CPU
needs to render a database synchronized with the master database
residing on the geometry server. Third, the graphics system is inher-
ently designed so that only scene changes need to be sent between
frames. Since network bandwidth is the limiting factor in interac-
tive distributed graphics, this feature is critical for the success of
any distributed graphics system.

Geometry server and geometry client objects are built on top of the
DGD language and the CDCL tools. The geometry server accepts
a DGD language input stream, thus altering the state of its internal
database, and accepts connections from geometry clients. When a
client connects, the server transmits the current state of the database
to that client (as a DGD language stream) and thereafter relays its
DGD language input stream to the client. The client handles the
chores of maintaining its local database. Server and client can be
started in any order, new clients can leave or join the server’s group
at any time, and the software is designed so that any component of
the client/ server group can crash at any time without effecting the
health of the rest of the system.

Under this architecture, an application wishing to use the distributed
display system includes a geometry server object. The applications

Figure 5 HMD System Diagram

graphics are adapted to fit the DGD language, and DGD records
are sent to the geometry server, both to initialize the environment
and to perform animations. The application then does not need to be
concerned with the nature of the clients connecting to it, even if this
is a dynamically changing factor. In fact, all network information is
abstracted away from the application, which just sees a scene graph
style API.

The next important component is a network-based synchronization
barrier, needed to synchronize the various displays. This is impor-
tant if the display CPUs or graphics cards are imbalanced, for in-
stance if a particluar display machine has better graphics perfor-
mance than the others in the cluster. Without a synchronization bar-
rier, the user will see the display attached to the high performance
machine update before the displays attached to the other machines,
causing tearing in the overall display. This is even important with
perfectly balanced display machines in a display wall context, but
where the different machines are displaying scene fragments of
greatly different complexities. For instance, if a scene consists of
a room with textured walls, a few geometrically simple objects, and
a single object of great complexity, the screen holding the complex
object can update with a noticeable lag relative to the other screens.

See Figure 5 for a diagram of how these elements fit together to
ower a head-mounted display.

An important characteristic of the design of this system, which it
shares with the Stanford WireGL project [6], is that the display
computers simply run a display client for the graphics protocol.
In other sytems, especially like those for distributed virtual envi-
ronments, each node in the distributed system will run the applica-
tion in question. Repo-3D and Avango are good examples of such
systems. In these, the library provides distributed shared memory
services for the applications. In the case of Avango, a shared dis-
tributed scene graph is provided, much like that provided by the
DGD [12]. In contrast, here we try to restrict the function of the
display computers as much as possible to providing display capabil-
ities only. The display client can be compared to a low-level device
driver. It does not know anything about the application connecting
to it or what geometry that application will send. It simply receives
information according to a well-defined protocol and translates that
information into visuals.

This highlights the difference between clustered VR and distributed
virtual environments. Namely, the different displays in clustered
VR are tightly coupled, while the different displays in distributed
virtual environments are loosely coupled. Furthermore, oftentimes
the users at various displays can independently modify the virtual

5

A Software System for Inexpensive VR via Graphics Clusters 6

environment, without modifying the world seen by others. A good
example of this would be dragging an object in the environment.
Generally speaking, the object’s position will track the dragging
motion on local displays but will only change position on remote
displays once the drag completes. This loose coupling reflects the
design target for distributed virtual environments, a group of col-
laborators, each at a seperate display computer with its own I/O
devices for interacting with the VE and a degree of autonomy from
other participants in the shared environment. In contrast, clustered
VR systems need to provide, as much as possible, the illusion of a
single system. Displays and I/O need to be tightly integrated across
component PCs. This means that individual components can be
fairly dumb, only resposible for handling a piece of the VE.

In terms of the systems architecture, the display client handles the
geometry client object, the piece responsible for pulling geome-
try from a geometry server object, and the barrier client object,
the piece responsible for keeping the component displays synchro-
nized. It also handles more mundane tasks like display resolution
and viewport. Since the display client has exclusive control of a
single video display, it acts much like a video driver, with the added
configuration functionality needed to let it become a coordinated
piece of a multi-screen system. Furthermore, the goal for the dis-
play client is for it to be always on, with applications connecting
and disconnecting with different content many times.

Portability is a key design consideration. By keeping the software
framework simple and the library dependencies small and lim-
ited to widely implemented OS services, like sockets, threads, and
OpenGL, porting the software is quite easy. The various compo-
nents of the DGD system work on SGI Irix, Linux, and Win32.
Portability is critical in the heterogeneous, cash-strapped, net-
worked environment targeted by this research. One wants to be
able to repurpose already existing equipment. One wants to have
the flexibility to run any piece of software on any piece of hardware
around the lab. Expensive SGI hardware should not go to waste,
and choice of a variety of PC operating systems ensures that one
will be able to track PC graphics performance and graphics drivers
no matter which OS forges ahead.

Clearly some degree of robustness is necessary for components
designed to work together over the network, even in a LAN en-
vironment. Furthermore, due to the large number of components
that must work together, stability becomes quite important. For in-
stance, a typical application might include a controlling application
program, display clients running on each display device, a barrier
server program, and a device server of some sort, possibly for joy-
stick data or 6DOF tracker data. Care must be taken to simplify the
process of starting, connecting, and restarting these components.
Otherwise the system becomes too difficult to set-up and use. All
components are created so that client/ server pairs can be started
in any order, clients can be dynamically added or subtracted from
server broadcast groups, and any component can crash or be killed
without taking down the rest of the system.

By making sure all client/ server pairs can be started in any order,
the application start process becomes much more flexible, ensuring
that no rigid start order for the various components. Furthermore,
requiring that all servers be able to dynamically add or subtract
clients from their broadcast group eliminates a level of configura-
tion. Neither barrier servers or graphics servers need to be told how
many clients will connect.

A concrete example pertaining to the DGD system is that graph-
ics displays can be augmented on the fly. One can decide while the
application is running to add an HMD display to the video wall.
Finally, by ensuring that the whole system can recover from com-
ponent failure, debugging is simplified and great flexibility in repur-
posing running components is gained. For instance, with the DGD

system one can kill the program providing the graphics data, start up
a different graphics server program, and continue as before, without
restarting the other system components.

Modularity is also important, both from the point of view of com-
ponent reuse and from the point of view of system stability. Since
components are forced to communicate over the network due to the
distributed nature of the system, modularily, via a network commu-
nications interface and a wire protocol, is already built into the sys-
tem. Note that this differs from component frameworks like Bam-
boo [13] or VR juggler [2] which are based on DSOs and runtime
linkers. In these cases, modularily comes from implementing an in-
terface for the manager program that loads and unloads DSOs and
facilitates callbacks between them.

Once modular components are created, they are relatively easy to
reuse. For instance, part of the system software used at the Inte-
grated Systems Lab is a program for routing 6DOF magnetic track-
ing data over the network. Since this data transfer is based on a well-
defined protocol built using CDCL tools, it is simple to embed the
client object in other programs or even to write a completely new
client, without changing other infrastructure. This example shows
an advantage of the protocol-based approach to modularity over
the runtime linker approach. Specifically, the programmer has more
freedom to manipulate the system and is not forced to fit his code
into a specific framework. Of course, the runtime linker approach
has the advantage of speed when components are running on the
same box, but this advantage is negligible in a highly distributed
environment.

Another important effect of modularity is system stability. In the
case of the DGD system, the display client programs are effectively
isolated from all other components. If those components fail, for in-
stance the application component crashes, the display clients can re-
main up and ready to receive a new protocol stream from a restarted
application component. In any clustered VR system, decreased re-
liability of the total system needs addressing. As the number of dis-
play devices rises, so to does the possibility that one of them will
fail during any given time period. Hardware failure of an individ-
ual node should not take down the whole visualization. Modularity
allows us to accomplish this goal in the DGD system.

6 Classification of Graphics Applications

Graphics applications can fruitfully be classified based on the
amount of data necessary to build a scene and further on the amount
of data necessary to build a given frame assuming that the data
needed to build the previous frame is already on hand. Note that
a large subset of graphics applications need very little new infor-
mation to draw a new frame. Architectural walkthroughs are good
examples of this phenomenon, where the change is in the viewing
transformation.

Another class of applications both requires large amounts of in-
formation to draw a single frame and relatively little information
to draw a new frame. The time tunnel visualization and the net-
work traffic visualization examples of the next section are instances
of this class. Such visualizations are especially suited to high per-
formance networked graphics display, provided that the underlying
API has the ability to easily cache data on the display side. This
is what scene graph APIs are designed to do, and WireGL demon-
strates that a caching scheme can also be built into the OpenGL
API. Further research would be required to determine whether this
can be as general as with a scene graph API.

The opposite end of the application spectrum would be a large
precomputed mesh animation, successive frames of which the pro-
gram attempts to pull out of main memory and display as quickly

6

A Software System for Inexpensive VR via Graphics Clusters 7

Figure 6 Human-Factors Environment

as possible. Here we have the convergence of a large amount of
data per frame and a large amount of data changing per frame. It
is unlikely that a simple broadcast model for graphics information
will ever provide satisfactory performance for such applications. In-
stead, methods for retreiving data from local memory or disk would
need to be added to the API. Easily integrating this into existing
APIs is a topic for further investigation.

7 Practical Uses of the DGD System

We test the system with three distinct types of visualizations. The
first is the program that motivated the DGD system, namely a psy-
chology application whose purpose is to study how subjects build a
mental representation of a complex virtual environment. The envi-
ronments are single rooms, large enough so that 4 to 6 are required
to perceive the whole horizontal extent and 3 viewport heights are
required to perceive the vertical extent. Pictures adorn the walls
and various 3D objects are scattered around the floor. The appli-
cation is split into two independent pieces, an editor program that
gives the users a means to create the environments that has a shorter
learning curve than a full-featured 3D modeling program and a dis-
play program which loads a sequence of environments and, while
an environment is loaded, changes the view based on user actions.
Both programs run across the DGD system, with the editor program
showing that the DGD interface is sophisticated enough to allow a
high degree of interaction with the virtual world.

Proper use of display lists could yield good performance for this
application under GLX with only one display. There are fewer than
20 objects in the environment, so assuming each is encapsulated in
a display list, the bulk of the data sent over the network will be 20
4x4 matrices. While we cannot improve this for the editor program,
as it must be able to manipulate every object, we can improve this
for the display program. In this instance, only the global transfor-
mation matrix needs to be changed. Everything else can be placed
in a display list.

Still, the DGD system offers distinct advantages over GLX. First, to
view the environment over an HMD, we need to be able to connect
the application to two display programs, something GLX cannot do
as it is designed to send one stream to one display device. Second,
we need to be able to synchronize the two displays, another capa-
bility missing from the GLX framework.

The computer system used to run this human factors experiment
consists of 3 600Mhz PIII PCs with Voodoo3 graphics cards and
128MB of RAM. The PCs all use the Linux OS. One PC produces
the left-eye image, another PC produces the right-eye image, and
the third PC runs the experiment, both by sending graphics informa-
tion and coordinating the framebuffer swaps of the display comput-
ers. A Virtual Research head-mounted display is connected to the
two display PCs. By using this set-up, we save substantial money
over the alternative of using SGI Onyx-class machines for our VR
application. Figure 6 shows left half/ right half images instead of
the left-eye/ right-eye images that would be sent to the HMD.

Figure 7 Time Tunnel Scientific Visualization

The second type of visualization stresses the system much more
than the first. Whereas the psychology experiment programs send
at most one hundred matrix updates a second, this visualization
tends to use the totality of the data processing capabilities avail-
able. The Pablo group at the UIUC has developed a metaphor for
visualizing the operation of MPI codes on supercomputers called a
time tunnel [11]. In this metaphor, the individual processors have
their activity logged along lines stretching along the long axis of
a cylinder. MPI message activity is visualized as chords stretch-
ing between the individual processor lines and through the interior
of the tunnel. As new events occur, they are added to the front of
the time tunnel, while already added events scroll along, eventu-
ally disappearing off the back edge of the time tunnel. The overall
effect is of a snapshot of the operation of a supercomputer over a
fixed time interval, with that interval travelling through time. Over-
all, this visualization is highly animated with large amounts of data
on-screen at any one time. Here there is a definitive advantage over
the GLX-based approach. Due to the dynamic nature of the scene,
display lists cannot be used. Consequently, rendering is much faster
for the DGD-based approach than the GLX-based approach. See the
benchmarks below.

We tested this visualization with data gathered from a solid rocket
simulation code produced by the Center for the Simulation of Ad-
vanced Rockets at the University of Illinois The particular code is
rocflow, which simulates the fluid dynamics of the gases produced
by the fuel ignition.

The third type of visualization also tries to stress the system, and is
furthermore an example of something that would be difficult for an
OpenGL-based API like WireGL to handle over a slow network
connection. Specifically, consider a large graph with a thousand
cube-shaped vertices, representing a computer network. The cube
faces can display various glyphs representing the state of each node,
and rotation of each cube can also be used for data display. This
fine-grained control makes putting the whole scene in a display list
problematic. Hence, an OpenGL-based API needs to broadcast a
large amount of matrix data per frame to draw the scene. A scene
graph API, on the other hand, only needs to broadcast matrices that
are currently being manipulated. Since that is potentially far fewer
than the total, this is a large bandwidth savings, which would be
especially important for operating over low bandwidth connections
such as the internet or 10Mbps LANs. To investigate this situation,
we have a program that randomly places 1000 cubes in space and
then randomly rotates various cubes and also randomly changes
face textures. See benchmarks below for performance versus GLX
on this simulated network visualization test.

8 Benchmarks of the DGD System versus GLX

The test machines are jack, steel, and isl25. Jack is a 4 processor
Onyx2, isl25 is a dual processor Octane, and steel is a 600Mhz PIII
PC with a GeForce graphics card running Linux. These machines
are connected by a 10Mbps building network. While SGI is not
the main target for this software, it does allow easier comparisons

7

A Software System for Inexpensive VR via Graphics Clusters 8

Figure 8 Simulated Network Visualization

between the DGD protocol and GLX since Irix has good support
for remote rendering over GLX. We stick to a 10Mbps network
to demonstrate the DGD software’s ability to operate in a low-end
network environment.

Our data first lists the machine pair executing the distributed graph-
ics, with the machine producing the data listed first, followed by
the machine consuming the data. The protocol is either DGD or
GLX. To eliminate testing irregularities from different code bases,
the only factor varied between protocol tests is how the graphics
data is rendered. In each case, the visualization code sends data to a
local DGD database. If the DGD protocol is used for remote render-
ing, the protocol relays these modifcations to the connected remote
DGD database, which is rendered by the display client program. If
GLX is used for rendering, the visualization code draws its local
DGD database.

We give estimates for the remote rendering bandwidth used by the
GLX and DGD protocols, as appropriate to the test. Finally, we
report the framerates achieved via these various rendering methods.

We first test a time tunnel visualization of a solid rocket simulation
code, using software and data from [11]. The only visual elements
are lines, representing the various events occuring with the super-
computer as the code executed. Approximately 27,000 lines make
up the tunnel during the steady state of the visualization.

machine pair Protocol Protocol Bandwidth Framerate
jack → isl25 GLX 700 KB/s 0.8 fps
jack → isl25 DGD 900 KB/s 14 fps
jack → steel DGD 1000 KB/s 18 fps

Now we test the simulated network visualization, as described in
the previous section.

machine pair Protocol Protocol Bandwidth Framerate
jack → isl25 GLX 800 KB/s 1 fps
jack → isl25 DGD 1000 KB/s 8 fps
jack → steel DGD 1000 KB/s 8 fps

steel → isl25 DGD 500 KB/s 8 fps

In conclusion, using the DGD protocol can lead to significant fram-
erate improvements over using GLX. This is largely due to the fact
that GLX needs to transfer the complete scene over the network at
each frame, while DGD only needs to transfer the scene’s changes.
Of interest in these tests is the graphics performance of the Linux
box relative to the SGI Octane. Steel is a sub-$1000 PC outfitted
with a high-end consumer graphics card, and it gives comparable
graphics performance to the high-end SGI box. Also interesting is
the Linux box’s ability to serve data when compared to a fairly pow-
erful Onyx2, jack. While jack wins hands down, the price/ perfor-
mance ratio is quite unfavorable to the SGI. It seems possible that
clustered PC solutions could provide comparable VR performance
to SGIs at a much lower cost.

9 How to Get the Software

The Integrated Systems Laboratory website, www.isl.uiuc.edu, has
source code for the core software, plus selected demos. Documen-
tation for the classes and various software components is also avail-
able.

References

[1] R. Aydt. The Pablo Self-Defining Data Format. www.pablo-
cs.uiuc.edu, 1992.

[2] A. Bierbaum, C. Just, P. Hartling, and C. Cruz-Neira. Flexible appli-
cation design using vr juggler. In Conference Abstracts and Applica-
tions. SIGGRAPH, 2000.

[3] I. Buck, G. Humphreys, and P. Hanrahan. Tracking graphics state
for networked rendering. In Eurographics/SIGGRAPH Workshop on
Graphics Hardware, 2000.

[4] C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-screen
projection-based virtual reality: The design and implementation of the
cave. In Computer Graphics. SIGGRAPH, 1993.

[5] K. Li et al. Early experiences and challenges in building and using a
scalable display wall system. IEEE Computer Graphics and Applica-
tions, 20(4):29–37, Jul/Aug 1999.

[6] G. Humphreys and P. Hanrahan. A distributed graphics system for
large tiled displays. In IEEE Visualization, 1999.

[7] B. MacIntyre and S. Feiner. A distributed 3d graphics library. In
Computer Graphics, pages 361–370. SIGGRAPH, 1998.

[8] R. Ribler and R. Aydt. Autopilot User’s Manual. www.pablo-
cs.uiuc.edu, 1998.

[9] T. Richardson, Q. Staffor-Fraser, K. Wood, and A. Hopper. Virtual
network computing. IEEE Internet Computing, 2(1):33–38, Jan/Feb
1998.

[10] R. Samanta, T. Funkhouser, K. Li, and J. Singh. Sort-first parallel ren-
dering with a cluster of pcs. In Conference Abstracts and Applications.
SIGGRAPH, 2000.

[11] E. Shaffer, D. Reed, S. Whitmor, and B. Schaeffer. Virtue: Perfor-
mance visualization of parallel and distributed applications. IEEE
Computer, 32(12):44–51, Dec 1999.

[12] H. Tramberend. Avocado: A distributed virtual reality framework. In
Virtual Reality, pages 14–21. IEEE, 1999.

[13] K. Watsen and M. Zyda. Bamboo- a portable system for dynamically
extensible, real-time, networked, virtual environments. In Virtual Re-
ality. IEEE, 1998.

8

