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ABSTRACT 
Researchers have had great success using motion capture tools for 
controlling avatars in virtual worlds. Another current of virtual 
reality research has focused on building collaborative 
environments connected by networks. The present paper 
combines these tendencies to describe an open source software 
system that uses motion capture tools as input devices for real-
time collaborative virtual environments. Important applications of 
our system lie in the realm of simulating interactive, multi-
participant physical activities like sport and dance. Several 
challenges and their respective solutions are outlined. First, we 
describe the infrastructure necessary to handle full-body 
articulated avatars as driven by motion capture equipment, 
including calibration and avatar creation. Next, we outline the PC 
cluster solution chosen to render our worlds, exploring  methods 
of data sharing and synchronization, both within the PC cluster 
nodes and between different sites in the distributed system. 
Finally, virtual sports require physics, and we describe the 
simulation algorithms used.  
 

Categories and Subject Descriptors 
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism – virtual reality 

General Terms 
Design, Human Factors, Management 

Keywords 
Immersive Virtual Environment, PC Cluster, networking, motion 
capture 

 

 
 
 
 
 
 

1. INTRODUCTION 
This paper describes experiments in the integration of full-body 
motion capture technology and systems for experiencing shared 
virtual worlds, examining the new types of interaction this 
combination facilitates. The last few years have seen an explosion 
of high-end commercial motion capture tools, mostly aimed at 
creating content for the entertainment industry. However, these 
tools can also power real-time interactive experiences, thus 
enabling teleimmersion and telecollaboration using a participant’s 
entire body.  
 

 
 

Figure 1. Fairy Sports: Two avatars play a game 
 
Important new types of shared virtual worlds become possible 
once a participant’s entire body is involved. Virtual sports, 
mimicking the physical engagement of a real sporting event, can 
be experienced. In addition, collaborative dance, among other 
performing arts possibilities, can become a reality. With this 
technology, a sports league with no physical court will become 
practical. Participants will be able, by changing their avatar, to 
interact with simulation-rich virtual worlds in ways impossible in 
the physical world. For instance, a virtual basketball match could 



 

 

even the odds between short and tall players by letting them drive 
avatars of equal heights in the virtual arena. 
 
A wide variety of shared virtual worlds exist. Real-time 
interaction over distance is now common via text-based chatting, 
first person shooter games, or massively multiplayer online role-
playing games. Successful research efforts have also explored 
telecollaboration very thoroughly, be it in virtual prototyping for 
engineering [17], collaborative science, as with high-end virtual 
reality [33], or advanced immersive teleconferencing, as in the 
National Tele-Immersion Initiative, some of whose research is 
described in [8]. Other experiments in telecollaboration are also 
worthy of note, such as EVL’s NICE [15], where geographically 
dispersed children can work together to tend a virtual garden. 
 
However, consumer forms of telepresence, like chat or 
MMORPG’s, rely on mouse and keyboard as input devices, which 
puts a significant experiential barrier between the user’s physical 
space and the shared virtual space. Common virtual reality 
interfaces, such as projection-based virtual environments [7], put 
the user in an artificial space, but, usually, just two or three 
sensors are used, not nearly enough to map the user’s entire body 
into the virtual world.  
 
The virtual reality community has, however, explored using 
motion capture technology as an input device to drive avatars in 
virtual environments. Early work focused on the mechanics of 
driving the avatar from the motion capture data, examining such 
methods as filtering noisy input and using physically-based avatar 
models to shape the data [22]. Related research has created a 
methodology for controlling an avatar, possibly of very different 
proportions and features than the controlling actor [29]. Other 
research efforts have explored using motion capture devices to let 
a participant receive training in a physical skill, such as Tai Chi 
[6]. In this particular case, the user wears an HMD and can see his 
own avatar, as well as the computer-controlled avatar of a Tai Chi 
master. 
 
In addition, the arts community has embraced motion capture as a 
tool capable of adding new modalities of expression to human 
motion. Choreographers can clothe human motion data with 
interesting geometries to create performances that would be 
impossible to stage in the physical world. The Ghostcatching 
installation is a striking early example of this methodology [16]. 
In addition, the Capacitor arts group has staged pieces that 
combine computer video generated off-line from motion capture 
data with a live performer [2]. Finally, a recent production of The 
Tempest used motion capture technology to embody a live 
performer in a computer-generated avatar, projected on a screen 
on stage [25]. While these art pieces use motion capture in 
exciting ways, they do not explore interactivity in a shared space, 
which only exists mediated through a computer. Such artificial 
spaces are the subject of the present work. 
 
We describe two experiments that combine full-body motion 
capture with teleimmersion in shared virtual spaces. Our 
experiments differ from previous work in several ways.  First of 
all, we investigate having multiple participants in our spaces, 
which involves merging previous research currents in avatar 

control and collaborative virtual environments into a single 
unified software system. Secondly, for reasons of economic 
practicality, our approach depends heavily on using PC clusters 
for rendering. This influences the design of the underlying 
software system, presenting challenges in creating data sharing 
mechanisms for use between the cluster nodes as well as between 
remote sites. Furthermore, the large number of computers 
involved in collaborative virtual environments based on PC 
clusters requires a developed software infrastructure focused on 
system management concerns like automatic launching of 
software components, configuration of those components, and 
managing the application over its time of use. Finally, a virtual 
sports arena must include a physical simulation that uses data 
from the players’ bodies to effect objects in the environment. We 
include such a mechanism in our open source system. 
 
The first experiment, Hummingbird, was an art performance 
showing collaboration between a live dancer in Los Angeles and a 
dancer in Illinois who was mapped into their shared world in real-
time using motion capture. The second experiment, Fairy Sports, 
consisted of two performers, each fully motion captured and 
executing a shared task, in this case passing an oddly-shaped ball 
back and forth in a virtual arena. For this work, we used an optical 
tracking system from Motion Analysis and the MotionStar 
Wireless system form Ascension Technologies. 

2. INTERACTIVE  TECHNIQUES 
Video conferencing is the most common form of 
telecollaboration. Many tasks, such as document sharing or joint 
steering of a running scientific simulation or visualization, can be 
accomplished with video conferencing instead of inside a 
collaborative virtual environment. For instance, suppose two 
physically dispersed researchers wish to steer a complex 
simulation. A GUI window with application steering controls, 
another window displaying current application state, and a video 
conferencing link suffice to enable meaningful collaboration. 
Collaborative virtual environments become more necessary the 
more physical the interaction between the participants needs to be.  
 
We explored situations in which simple video transmission 
between sites participating in the shared world would not suffice. 
Motion capture data has a much lower data rate than video, easily 
less than 1 Mbps for a single performer. By using it to drive an 
avatar in a remote virtual world, one can achieve very high quality 
images with little network usage. Also, since this data is really 
just raw geometric information, the programmer can easily 
repurpose it.  
 
For instance, the Hummingbird piece focused on transformation 
and evolution, something that would have been difficult or 
impossible to achieve with video. To realize Hummingbird, the 
performer needed to appear as different creatures, a larvae, a fairy, 
and a machine, at different times. Because our system focuses on 
obtaining and transmitting raw geometric information about the 
participants, these transformations were easily achieved by 
clothing the performer with different avatars at different points in 
the piece.  
 



 

 

Another limitation of video is that it decreases the ability of 
participants to share the same virtual space. In Fairy Sports, for 
example, the performers pushed a squishy torus animated with 
real-time physics back and forth between one another. This kind 
of task could not be done with video at all since it directly 
involves the performers interacting in real-time within an active 
virtual space. Video does not create the spatial information 
needed for a simulation. 
 

 
 

Figure 2. The immersive VR interface in Fairy Sports 
 
In Fairy Sports, we experimented with different methods of 
immersing the participant in the shared world. We used a 
projection-based virtual environment with magnetic tracking and 
stereo graphics for one of the participants. For the other, who was 
on our optical motion capture stage, we tried non-stereo methods. 
We found that one non-stereo view could not give the performer 
enough information to play the game effectively, but two different 
views of the shared world enabled participation in the task.  
 

  
 

Figure 3. Optical mocap interface for Fairy Sports 
 
Consider the player on the optical motion capture stage. The 
cameras of the optical motion capture system need significant 
unobstructed line of sight to the performer to be effective. This 
condition, when combined with our small 20 foot by 30 foot 
stage, made an immersive virtual environment utilizing surround 
screens impractical. Consequently, only a limited, though still 
significant, proportion of the performer’s field of view could be 
covered by screens. Gaps existed to allow the motion capture 

cameras to see the performer. As a result, projection from the 
head position would induce blind spots. Furthermore, without 
stereo video, the participant has no way to judge distance from 
himself to the ball in the Fairy Sports game, hindering his ability 
to hit it and lob it back to his partner. However, multiple views, 
such as a side view and a behind view, can, in fact, give the 
performer enough information to control his avatar and play the 
game.  

3. PC CLUSTER SPECIFICS 
Both Hummingbird and Fairy Sports use standard PC’s for their 
infrastructure. The PC platform has many desirable 
characteristics, such as low cost, low weight, and easy 
serviceability, when compared to proprietary Unix graphics 
workstations. For Hummingbird, the existence of compact but 
powerful PC’s was important as we had to ship several across 
country to the performance site. In this experiment, the computers 
in the distributed system formed an ad hoc cluster connected 
through the Internet2. Its displays were located at geographically 
dispersed locations, one in Los Angeles and one in Illinois, and 
consequently did not have to be precisely synchronized.  
 
On the other hand, in Fairy Sports, we used a 6-sided immersive 
environment, the Beckman Cube [10], as one of the interfaces. In 
this case, each wall had its graphics produced by a separate PC, 
with all six images required to be perfectly synchronized. Some of 
this synchronization followed from the data sharing mechanisms 
built into the Syzygy library underlying the experiment, as 
explained below. However, some hardware synchronization was 
also needed. Since the Cube uses active stereo, the video signals 
of the participating PC’s need to be genlocked together so that 
their vertical retraces occur at the same time. Consequently, we 
use graphics cards capable of accepting an external genlock 
signal. In this way, active stereo across the cluster display is 
possible. 
 

4. CONTENT CREATION PIPELINE 
The avatars used for this work were constructed from discrete 
pieces, one piece per bone in the avatar skeleton. This geometry 
was constructed in a modeling package and exported to OBJ 
format, with each piece an OBJ group. We represented the 
avatars’ motion with the common htr format, which expresses the 
skeleton as a hierarchy of bones whose motion is given relative to 
a base position. An htr file containing only the base position 
information is created using a Motion Analysis plug-in for Maya. 
This information then maps each OBJ group in the avatar OBJ to 
a standard position, with the pivot point at the origin and pointing 
along the positive y-axis. 
 
The transformed individual pieces are then stored internally in a 
scene graph, which mirrors the hierarchy of the skeleton. This 
database has additional structure that allows three aspects of the 
avatar animation to be independent of one another: the avatar’s 
geometry, the stream of bone motion data, and the precise 
positioning of markers on the performer. Using this feature, 
avatars can easily be exchanged between performers or a single 
performer can take on different avatars dynamically. It even 
allows one to recover from different marker placement between 



 

 

sessions. This flexibility comes from associating three additional 
transform nodes to each bone. 
 
Each piece of bone geometry has 4 transforms associated with it. 
There are a post-transform node, which attaches to the pre-
transform node of the bones’ parent,  and a transform node, which 
stores the rotation of the bone relative to its parent, as normally 
determined by the htr file, and is attached to the post-transform 
node.  There are also a pre-transform node attached to the 
transform node and a local transform node, which is attached to 
the pre-transform node and to which the geometry is directly 
attached (Fig. 4).  
 
The post-transform can be used to change the relative positioning 
of a limb. The pre-transform can be used to change the scale of 
the hierarchy going down or the base angle at which the limb 
protrudes, and the local transform can be used to change the 
relative orientation or scale of the limb without effecting the 
hierarchy below it. We used a custom GUI to interactively clothe 
the performers with their avatar (Fig. 5). The operator manipulates 
the various bones as above on the GUI’s left side while watching 
data stream in on the right. Note how a poor fit of avatar to 
performer can be corrected using this tool. 
 

 
 

Figure 4. Partial scene graph for the skeleton 
 
As an interesting side effect, the same limb motion data can be 
used to drive a distorted avatar. Using these methods, the limbs 
could suddenly appear very large or very small, be placed 
differently on the body, or even be angled differently than 
normally (Fig. 5).  

5. SOFTWARE ARCHITECTURE 
Shared virtual experiences necessarily involve networking 
software, which presents certain challenges in design and 
implementation. Interestingly, much of the same infrastructure 
applies to both cluster-based graphics and shared virtual worlds. 
In either case, the information necessary to construct the scene 
must be shared among the computers drawing the scene. A 

protocol needs to be constructed for this, with a means of 
encoding messages, and connections between the various 
components need to be managed and configured. Significant code 
reuse can occur between these problem domains.  
 
Of course, these software types are not completely identical. 
Collaborative graphics may need to accommodate situations of 
much lower bandwidth and much higher latency than cluster-
based graphics. And, clearly, cluster-based graphics needs much 
tighter synchronization, preferably frame-locked, than 
collaborative graphics. 
 

 

 

 
 

Figure 5. Clothing the performer: Uncalibrated, calibrated, 
and distorted. 

 
Work on using graphics clusters for visualization and for shared 
virtual worlds has been intense in recent years. On the graphics 
cluster side, WireGL [13], Chromium [14], and DGL [19], have 
been used to display OpenGL applications on tiled walls 
consisting of dozens of projectors (the goal being very high 
resolution). On the shared virtual worlds side, Avocado developed 
the idea of a shared scene graph for sharing virtual worlds 
between users at multiple sites [31]. Similarly, Repo 3D explored 
using a scene graph model for distributed graphics [20]. An open 
source scene graph project, OpenSG, with clustering support, also 
exists [32]. 
 
Furthermore, the various incarnations of the CAVERNsoft project 
[18][24] have examined the requirements for creating an efficient 
networking structure for shared virtual worlds, along the lines of a 
distributed shared memory database with an additional UDP data 
transfer path. Many other projects for shared virtual worlds exist, 
notably NPSNET [21][4] and MASSIVE [11]. 
 



 

 

Syzygy, the software underlying our experiments, differs from 
these projects in several ways. First of all, it is built to facilitate 
both cluster-based graphics, where synchronization between the 
displays is a priority, and teleimmersion, where latencies dictate 
that displays cannot be tightly synchronized. Second, it includes 
functionality specifically for facilitating the integration of real-
time full-body interaction data. Third, it integrates distributed 
graphics code, systems management middleware, and input device 
networking and management into a single coherent code base, 
reducing overall software complexity.  
 
Syzygy is built in a layered architecture, as described in [28]. At 
the base layer, is a messaging system that allows the programmer 
to define custom protocols for communications between the 
software components. Also at the base layer is a set of network 
client and server objects that provide connection management 
functionality along with aid in processing messages. Above this 
layer, are built the various service-specific objects, like input 
event processors, input event servers, input event clients, network-
aware graphics databases, and systems management components. 
Syzygy constructs its simulations from these pieces. 
 
Other aspects of Syzygy are similar to well-known software 
projects. For instance, the VRPN project lets programs connect to 
their input devices over the network [30]. Syzygy also features a 
networked input event protocol that lets applications treat 
peripherals connected to remote computers as local input devices. 
Furthermore, communication with the various components of the 
distributed system and the configuration of those components is 
the sort of middleware task that grid operating systems like 
Globus [9] and Legion [12] are meant to accomplish. Like these 
systems, Syzygy has an infrastructure that facilitates launching 
and configuring distributed applications. 

6. SYZYGY: GRAPHICS DATABASE 
The visuals for these experiments build on the Syzygy graphics 
database. This is a hierarchical scene graph with a C++ API and 
has been described in-depth in [27]. Briefly, the application 
contains a master copy of the database. A general-purpose 
rendering program, szgrender, can connect over the network to 
this copy, and when connection occurs, the database state is 
transferred atomically. During a given frame, the application’s 
graphics database logs changes that occur, and, when it is time for 
the next frame, transfers the entire buffer of changes to the slave 
databases. When the software is operating on a graphics cluster, 
the consumption of the buffer of database changes and the 
subsequent display of the new image is performed synchronously 
across all cluster PC’s. Synchronization occurs over the network.  
 
However, this tight synchronization is undesirable for 
telecollaboration over long distance networks. Specifically, when 
a slave database is ready to display the next frame, it notifies the 
master database and waits for the master to send a message telling 
it to swap buffers. Consequently, for tight database 
synchronization, network ping time is an upper bound on frame 
rate. On LANs, with ping times of under a millisecond, this effect 
is unimportant. However, even a high-performance WAN can see 
ping times of 40-60 ms on a transcontinental haul. Consequently, 
to enable collaboration over long distances, the graphics database 
objects must be able to operate using weaker synchronization 

schemes. In such cases, the application simply sends a stream of 
database update buffers to all connected databases.  
 
The graphics database has two other features that prove vital for 
the work described in this paper. By default, all connected 
databases are drawn from the same camera position as the master 
database, with view direction and frustum possibly determined by 
screen location, as is normal in projection-based virtual reality. 
However, telecollaboration requires slave databases for different 
participants to be drawn from different viewpoints, and different 
views can aid the user in reconstructing depth information and 
other scene characteristics. Fairy Sports uses this feature, as 
described below.  
 

 
 

Figure 6. Systems diagram for Fairy Sports 
 
Finally, it is critical for the various components to be able to join 
and leave the distributed system dynamically. This facilitates 
experimentation with the distributed system, as viewing nodes can 
be added to and removed from the cluster while the system is 
running. The ability to do this while maintaining tight frame-by-
frame synchronization is a unique feature of Syzygy [27]. In 
addition to making experimentation with systems configuration 
easier, cluster application fault tolerance is increased, a 
characteristic that becomes more important as the total amount of 
hardware involved in running the application increases. The 
systems diagram for Fairy Sports (Fig. 6) shows how complex 
such clustered applications can become. 

7. SYZYGY: DISTRIBUTED SYSTEMS 
Experiments in interactive techniques require an infrastructure for 
handling input devices as well as graphics. In out case, input event 



 

 

servers put event streams on the network, communicating with the 
devices themselves via driver objects. Applications use generic 
input event client objects to connect to the servers and read the 
event streams. A network-based input event handling framework 
is essential for the experiments in this paper since too many input 
devices are involved to connect them to a single computer. 
 
This feature is crucial to the success of projects like Fairy Sports 
that involve multiple large-scale motion capture systems. For 
instance, the motion capture device may only provide data output 
to a particular OS platform but the application may need to run on 
another OS. In this case, a network protocol for input events 
allows an application client object to, in a platform independent 
fashion, receive events from a server object running on an OS 
platform capable of interfacing to the device. In our case, the 
Motion Analysis motion capture system only has available an 
interface to Windows systems but we want to run the Fairy Sports 
application on Linux. 
 
Another important software feature offered by Syzygy is 
integrated messaging services. The szgserver program manages 
the Syzygy distributed system [28]. All components of this system 
connect to the szgserver, receiving configuration information 
from it and using it to transfer messages from one component to 
another. From the command line of any computer in the cluster, 
one can send a message to any of the running Syzygy programs. 
In our applications, the operator uses this method to dynamically 
change camera angles in a running view of an experiment, as is 
useful for video recording, or in changing application state. For 
instance, in the Fairy Sports piece, the operator needs to drop the 
ball from time to time, an action triggered by a Syzygy message. 
 
Furthermore, in a distributed system, components need to be 
configured. The szgserver maintains a central database of 
configuration information for the various computers in the cluster. 
It can also be used to monitor running components, see how they 
are configured, kill them, and re-launch them. This activity can 
take place from any network accessible node. Consequently, 
during the run of a complex application like Fairy Sports, 
involving over a dozen computers dispersed throughout a large 
building, a single operator can monitor the health of the system, 
making changes as needed. 
 
8. PHYSICS 
Sports and similar activities depend on physical interactions 
between objects to operate. Consequently, the Fairy Sports 
experiment requires a real-time simulation engine to allow the 
avatars to interact with the ball. We use a simple physics engine, 
VMAT, an abbreviation for Virtual Materials, for this purpose. 
The engine uses point masses connected by springs to simulate 
flexible objects. Polygonal skins supported by these spring 
networks provide collision detection and response, as well as a 
graphical representation of the object. 
 
The ball in Fairy Sports is, in fact, a flexible torus. This shape was 
chosen to allow interesting modalities of interaction, such as an 
avatar putting its arm through the central hole. Because the torus 
is flexible instead of rigid, its motion appears rubbery, with the 
underlying spring network providing the simulated flexibility.  

 
 

Figure 7. Simplified shadow geometry for the avatar 
 

We now examine how the torus was constructed from springs.  
First of all, its skin consists of a grid of point masses mapped to 
its surface. Adjacent point masses are connected via springs. 
Next, to inhibit buckling of the skin, each point mass has springs 
connecting it to nonadjacent masses, these being located at 
distances of both 2 and 3 elements in the skin’s grid. To reinforce 
the object and prevent it from collapsing, a ring of point masses 
occupies the torus’ interior. These interior masses are connected 
via springs to nearby masses on the skin.   
 

 
 

Figure 8. The ball in Fairy Sports: Spring network supporting 
the torus’ skin 

 
The objects in the VMAT engine use polygonal skins to detect 
collisions with each other. The grid of point masses on the torus’ 
surface is covered, in the obvious way, by triangles. These 
triangles are both drawn to give a graphical representation of the 
torus (the Fairy Sports ball) and used by the physics engine to 
detect collisions with other objects in the simulation. With the 



 

 

avatars, on the other hand, a simple identification of triangles in 
the avatars’ geometrical representations with collision detecting 
triangles in the avatars’ physics representation is impossible. The 
avatars are too geometrically complex, containing nearly 10,000 
triangles.  
 
Consequently, we do not use the avatars’ geometry in the 
simulation but instead, for each avatar, construct a shadow 
geometry consisting of axis-aligned bounding boxes attached to 
each of the avatar’s segments. These bounding boxes are driven 
by the avatar’s motion, and the triangles comprising them are used 
for collision detection with the ball. By making this substitution, 
we are able to run our simulation in real-time. Other researchers 
have embedded complex geometry in a simplified physical 
framework for the purposes of real-time simulation, notably [3]. 
 
We now briefly walk through the simulation’s inner loop. Each 
time step of its evolution is divided into two parts. First, the 
spring network underlying the ball is advanced using an ODE 
solver. Next, collisions between its point masses and triangles 
belonging to the avatars’ shadow geometry are assessed. To speed 
up this process, the simulated space is evenly divided into a cubic 
grid and only point-triangle pairs from nearby cells are tested for 
collisions. Each triangle has a surface normal associated with it, 
whose direction defines the inside and outside of the object. If a 
point mass has passed through the triangle from its outside to its 
inside, a collision has occurred. In this case, the point mass is 
moved back along the normal so that it lies on the triangle’s 
surface. Its velocity vector is also reflected along the normal. 
 
We now attempt to give an idea of the simulation’s performance. 
Each avatar has a collision skin built from 240 triangles, as 
outlined above. The ball is comprised of 126 point masses, 1022 
springs, and 224 collision triangles. On a 1 GHz Pentium 3 
processor, each animation frame of Fairy Sports is computed in 
about 24 milliseconds. 
 

 
 

Figure 9. Photo from Hummingbird performance 

9. HUMMINGBIRD: DETAILS 
Our first experiment was an art piece, Hummingbird, performed 
in October 2002 between a dancer in Illinois and a dancer in Los 

Angeles. This performance, with its theme of metamorphosis, 
exploited motion captured data’s advantages over video by 
transforming the performer’s rendered avatar, in real-time, from 
one form to another. It also highlighted another important aspect 
of motion capture data: it is an excellent way to force high-quality 
content through a thin pipe. Since the avatar geometry is only 
transmitted once, and thereafter only the limb transformations 
need to be transmitted, the bandwidth requirements are 
significantly under 1 Mbps for a high-resolution animation, 
obviously far superior to video.  
 
The performance involved a motion-captured dancer in Illinois. 
The motion capture data was transmitted to a local computer that 
maintained the master copy of the graphics database and executed 
the performance logic, which mainly consisted of transitioning the 
avatar from form to form based on a preset timeline. The master 
database was displayed on a projection screen in the motion 
capture room, so that the performer could get feedback regarding 
her actions in the virtual world.  
 
A computer behind stage in Los Angles ran a slave graphics 
database that mirrored the database in Illinois, but was not tightly 
synchronized frame-by-frame to it. This computer projected video 
onto a transparent screen behind which the live performer in Los 
Angles danced. To give the performer in Illinois feedback 
regarding the events on stage, a video camera was set up in LA 
and streamed video back to Illinois, where it was displayed as a 
transparent overlay on the animated avatar image. 

10.  FAIRY SPORTS: DETAILS 
Our second experiment with these systems was Fairy Sports. In 
this piece, two performers try to push a flexible torus, animated by 
real-time physics, back and forth between one another. The 
physics is such that any part of the avatar can interact with the 
object. This simulated world made full use of the advantages in 
interactivity afforded by using motion capture. The bodies of the 
participants are projected fully into a shared virtual space, and 
they are able to manipulate rapidly changing aspects of that space 
in a cooperative fashion. Video conferencing cannot provide a 
similar shared experience. An interesting application of this 
technology would be in integrating multiple synthetic performers 
into a scene for motion pictures or video games. 
 
For this experiment, we used two motion capture stages. One was 
a fully immersive virtual reality chamber equipped with a 
MotionStar wireless system by Ascension Technologies and 10 
magnetic sensors. On this stage, the performer was immersed in 
the simulation using a projection-based virtual environment, as 
pioneered by EVL [7]. This environment uses active stereo to give 
a sense of depth, has 6 walls, one of which slides shut so that the 
user can be fully surrounded (the screens are in a cube 
configuration), and has its display images drawn from the user’s 
head perspective (Fig. 2). 
 
The other stage used the same Motion Analysis optical tracking 
system as Hummingbird and Magic Mirror. While we did not 
have the capability to display stereo video on the optical motion 
capture stage, we nevertheless attempted to increase the 
information offered to the performer there by building a new 



 

 

screen configuration. Two large screens were built, sandwiching 
the performer in a corridor-like space. The motion capture 
cameras were rearranged so that they pointed directly into the 
space from either side of the corridor. Each screen displayed the 
same image. By mirroring the screens, we allowed the performer 
to turn around and continue interacting, something that would 
have been impossible with only a single display. 
 

 
 

Figure 10. Still from Fairy Sports 
 
We found that a single view was insufficient to give the performer 
on the optical motion capture stage enough information about the 
scene. Consequently, we used two computers, each displaying a 
different view. By using these views together, the performer could 
reconstruct the scene sufficiently to interact with the other avatar.  
 
In the projection-based virtual environment, much more so than 
on the optical capture stage, the performer manipulated her avatar 
as if she was embodied in the space. The mechanics of virtual 
environments accomplish that for us and, indeed, seem to make 
the performer embodied in virtual reality more effective at playing 
the game than the performer on the optical stage. 
 
We now briefly discuss the software architecture for this 
experiment. The application maintains the master graphics 
database and runs the simulation of the flexible torus batted back 
and forth between the performers. The PC on which the 
application runs does not render graphics. Input client objects 
embedded in the application connect across the network to input 
servers that in turn connect to the various motion capture devices, 
putting their data on the network.  
 
There are, over all, 9 slave databases connected through the 
building’s LAN to the application’s master database, each running 
on a different computer (Fig. 6). Six of these are used to power 
the projection-based virtual environment, one per wall. Another 
two are used to provide the views for the performer on the optical 
motion capture stage. A final computer is used to output video to 
video tape to provide a record of the performance.  
From a control console, the operator can monitor the state of the 
distributed system. Messages can be sent to the application 
causing a new to drop from the virtual sky. Camera angles on any 
of the displaying slave databases can also be changed. This 

allows, for instance, the operator to dynamically change camera 
angles in the video tape based upon events in the virtual world. 

11.  CONCLUSION 
By combining work in virtual reality and teleimmersion with 
motion capture equipment, we are able to present participants 
with an unprecedented level of interaction with a shared virtual 
world. Full embodiment in a virtual world enables the completion 
of tasks requiring whole body presence, like sports or other 
games. The whole experience is strikingly realistic, both for the 
participants and for observers watching the virtual world. 
 

12.  OBTAINING THE SOFTWARE 
The VMAT physics library, the Syzygy clustering software, and 
the infrastructure for our motion capture and telecollaboration 
experiments can be freely downloaded from www.isl.uiuc.edu. 
These libraries and applications are licensed under the GNU  
LGPL. 
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