

Syzygy: Native PC Cluster VR

Benjamin Schaeffer, Camille Goudeseune
Integrated Systems Laboratory, Beckman Institute, Univ. of Illinois at Urbana-Champaign

{schaeffr,camilleg}@isl.uiuc.edu

Abstract

The Syzygy software library consists of tools for programming VR applications on PC clusters. Since the PC cluster
environment presents application development constraints, it is impossible to simultaneously optimize for efficiency,
flexibility, and portability between the single-computer and cluster cases. Consequently Syzygy includes two application
frameworks: a distributed scene graph framework for rendering a single application’s graphics database on multiple
rendering clients, and a master/slave framework for applications with multiple synchronized instances. Syzygy includes a
simple distributed OS and supports networked input devices, sound renderers, and graphics renderers, all built on a robust
networking layer.

1. Introduction

In recent years, commodity PC platforms have
become useful tools for scientific visualization and
virtual reality. Unfortunately the hardware of a single PC
is too limited to support high-end applications. Multi-
projector immersive environments need multiple high-
performance graphics cards to realize their full potential,
an impossibility for a PC with only one AGP bus. This
limitation can be overcome by clustering multiple
commodity computers together. PC clusters are a viable
alternative for high-end VR applications (figure 1).

The PC cluster hardware platform is very different
from shared-memory SMP systems that have commonly
been used for VR. As is common in engineering, this
poses a trade-off: PC clusters have a favorable
price/performance ratio at the cost of increased software
complexity. For instance, application management
grows more complicated since built-in OS tools no
longer suffice, especially for heterogeneous clusters.
Also, communications bandwidth between components
of the application can now be a bottleneck and
synchronizing render nodes is more difficult, especially
for highly animated applications using real-time data.

Syzygy addresses the issues that make writing and
running VR applications on a cluster more difficult than
on a single computer, since it is designed from the
ground up to support PC clusters. Instead of adding clus-
ter support to a library primarily designed for single-
computer operation, it focuses on providing tools that
directly address the challenges of cluster VR software.

This design poses another engineering tradeoff: although
Syzygy runs on a single computer, other VR libraries
may be better suited to such a configuration.

Figure 1. The ISL Cube running a Syzygy port of
the “Optiverse” geometrical visualization [7].

Syzygy presents multiple VR application frameworks.

Different applications may need different structures to
achieve high performance despite the cluster’s limited
communications bandwidth. Another concern is keeping

render nodes synchronized under the stress of highly
animated applications. Syzygy’s different application
frameworks address these problems by optimizing net-
work usage patterns and synchronization methods for
particular classes of applications.

For applications that are highly animated or depend on
external data sources, Syzygy provides a distributed
scene graph framework. On the other hand, for
applications needing small amounts of shared data per
frame, Syzygy’s master/slave application framework is
ideal. With this framework the programmer can define a
custom data sharing protocol. In fact this framework can
even be useful for applications that require more data
sharing, for instance if the shared data can be
compressed. Both of these frameworks support
networked input devices and sound rendering.

In keeping with its focus on clusters, Syzygy departs
from the shared memory model used by most VR
libraries. Instead it uses message passing, a better fit to
the cluster environment. This message-passing
architecture also eliminates common shared-memory
programming errors and lets the underlying application
framework more tightly control how data is shared and
synchronized between application components.

The cluster setting’s unique application management
problems are handled by a simple distributed operating
system, Phleet. This system handles process and
configuration management. Phleet particularly simplifies
configuration of the distributed system by storing the
entire cluster’s configuration information in a network-
accessible database. This database can be altered from
the command line anywhere on the network, and avoids
scattering configuration files across all the cluster PC’s.

C++ details are found in the Syzygy references,
tutorials and source code [16].

2. Previous work

The past decade has seen much effort expended on
VR library development, both commercial and open
source. Of particular note is the CAVELib, developed in
the early 1990’s at the Electronic Visualization Lab [5].
Initial versions of its immersive projection environment
ran on a pair of networked SGI computers.
Consequently, the CAVELib includes support for VR
clustering. The library shares some fixed data through
the cluster, such as a navigational matrix and input
device values. Further data sharing can be done through
a means of transferring blocks of memory between
nodes. In contrast, Syzygy provides more elaborate
mechanisms for data sharing and makes these
mechanisms central to its API.

Another interesting software effort in this area is VR
Juggler [3], a VR library similar in function to the
CAVELib. Two extensions provide clustering support,

Net Juggler [14] and Cluster Juggler [13]. In each case, a
full copy of the VR Juggler application runs on each ren-
der node of the cluster. Applications share input events
and are synchronized at the end of each drawn frame.
Thus, application state remains consistent only if it solely
depends on VR Juggler input events.

While this approach has many advantages, notably
code reuse, it prevents the developer from exploiting the
cluster’s full power with highly optimized, application-
specific protocols. Also, all nodes of the cluster must
start at the same time, with new nodes unable to join
later. In contrast, nodes of a Syzygy application can join
or leave the cluster during application operation. The
application’s display can even migrate across VR devices
while it is running.

Still another VR library is DIVERSE [10]. While this
library does not explicitly support clustering, it does
concern itself with networking infrastructure. DIVERSE
provides a framework for networked shared memory
built around a push model. This networked shared
memory can be used to connect input devices to a VR
application, or to construct shared virtual environments.

Some projects in distributed graphics are also
intimately related to this work. For instance, the Avango
project has investigated using a distributed database to
implement shared virtual worlds [19]. Recently, they
have adapted their research to clustered-based graphics as
well. Other projects like Repo 3D are also based on
databases or scene graphs [12]. In addition, graphics
projects like WireGL [9] and DGL [11] implement
software infrastructure which drives a graphics cluster by
distributing OpenGL primitives.

Finally, Syzygy’s support for networked input devices
is similar to the VRPN library [18]. Syzygy’s networked
sound rendering has a precedent in the client/server
model of the VSS sound server [2].

3. Infrastructure

Syzygy’s layered architecture facilitates reuse of
software components. At the foundation is a
communications layer. This contains a wrapper library
that hides the differences between Windows, Irix, and
Linux sockets, threads, serial I/O, and other OS features,
increasing application portability. It also contains the
Syzygy messaging infrastructure. Syzygy components
communicate through efficient binary-encoded messages,
and this communications layer contains functions for
defining message types, collections of message types
(languages), translation between different machine-
dependent formats (e.g., endianness), byte-stream
parsers, and so on. The messaging infrastructure owes
much to systems like CORBA, RPC, and lesser known
packages like SDDF [1].

Communications Layer

Phleet I/O FrameworkMedia Protocols

Media Objects I/O Drivers

Application Frameworks

The communications layer also has networking com-
ponents that send and receive data via Syzygy messages.
Server components automatically manage connections
and communications with multiple clients; client
components connect to just a single server. Robustness
is built into this fundamental level by ensuring that
components can connect in any order and can survive
their connections disappearing at arbitrary times. If a
server disappears, its formerly connected clients will
keep running, searching for a new server to which they
can connect and resume operation. This low-level
functionality is reflected, for instance, in the ability of
Syzygy applications to add or remove display computers
at run time.

Specific functional units are built on top of the com-
munications layer (figure 2). First there are media proto-
cols. There are client/server pairs for managing net-
worked synchronization primitives. There are also units
for transmitting and displaying graphics information and
sound. Next, Syzygy’s distributed operating system,
Phleet, uses the same client/server object pairs. Finally,
on top of the communications layer Syzygy builds a net-
worked device I/O layer for moving data from input de-
vices like trackers to the virtual environment.

By themselves these client/server pairs for the media
protocols or the I/O framework are not very useful in a
distributed setting. However, when management and
configuration functionality is added to them via Phleet,
they become substantially more useful. These network
media objects can be semi-autonomous. A sound ren-
derer can be managed remotely and receive sound play
requests from anywhere on the network. Similarly, a
graphics renderer can have its viewport reconfigured on
the fly, while it receives and displays graphics data from
first one source and then another. These renderers can be
killed and relaunched remotely using Phleet, as well as
moved around from node to node in the cluster. Servers
for streams of input device events can also be managed
from anywhere in the cluster while the application runs.

Figure 2. Software layers in Syzygy.

These basic building blocks for graphics, sound, and
input devices in the cluster can be manipulated remotely
through Phleet, either from the shell prompt or from C++
code. This allows the creation of sophisticated network-
aware application frameworks that coherently combine
all the components for the programmer. This can be
done in different ways, given different application re-
quirements; Syzygy currently implements two different
application frameworks.

4. Phleet

Phleet is Syzygy’s distributed operating system. In
concept, it is influenced by Grid operating systems
Globus [6] and Legion [8]. Most importantly, it provides
facilities for stopping, starting, and inspecting processes
on various nodes in the cluster. It has a built-in mecha-
nism for passing messages to running processes. Phleet
also provides a network-accessible parameter database
that replaces the configuration files that might otherwise
be scattered across all the machines in the cluster. This
greatly simplifies administration. Finally, Phleet’s global
locks let complicated manipulations of cluster state be
done atomically. These are especially important for ap-
plication launching. Syzygy’s application frameworks
examine cluster state on launch, automatically executing
needed helper programs and terminating incompatible
ones. Cluster-level locking prevents other applications
from interfering with this process and leaving the cluster
in an inconsistent state.

Because it is built on Syzygy’s core networking layer,
Phleet can forge a heterogeneous system into a single
cluster. It also has a flexible interface: all of its function-
ality can be accessed from either the command line or
from C++.

4.1. Phleet Infrastructure Programs

From the shell prompt, Phleet looks like a collection
of executables. At its core is the szgserver program that
manages the Syzygy cluster. This program stores an
online database of attributes of each host in the network.
Different attributes are assigned to different Phleet users,
so several developers can simultaneously “log in” to the
cluster and then independently query and modify the da-
tabase. Thus, each developer can run the same program
on the same cluster with their own configuration.

The szgserver program also maintains a process table
of which programs are running on which hosts. Each
entry contains the host name, the application name, and a
numeric ID unique across the cluster (much like a Unix
process ID). Entries are automatically added to and re-
moved from the table as programs start up and terminate.
The szgserver can also transfer messages between con-
nected processes. However, for efficiency most Syzygy

components only use the szgserver to configure direct
connections amongst themselves.

Several features of the szgserver program ease the
creating and maintaining of clusters. Multiple szgservers
can run simultaneously on a network, each defining a
cluster. Cluster membership is dynamic: a node can
switch clusters at any time. In addition, an automatic
discovery mechanism lets nodes spontaneously form
clusters, without specific configuration. Finally, the
szgserver can provide DNS functionality, which is con-
venient if a server is not available or if noncanonical host
names are desired.

Phleet includes many other programs. A critical one
is szgd, a remote execution daemon with uniform opera-
tion across Syzygy’s supported host operating systems.
Each node in a Syzygy cluster runs an instance of szgd,
letting distributed applications be managed from any-
where on the network. Phleet also includes a host of
command line programs for managing the distributed
operating system: querying and altering the configuration
database, launching or killing processes on a cluster
node, listing the running processes on the cluster, and so
on.

4.2. Phleet from C++

From the programmer’s point of view, Phleet’s inter-
face is a single C++ class. Constructing an object of this
class implicitly connects the program to the cluster. This
object’s methods can then be called to do anything in
Phleet that is possible from a shell prompt, though with
increased flexibility. In fact most of Phleet’s command-
line programs simply wrap these methods.

The C++ interface can do things impossible from the
command line. While the command line programs can
be scripted to perform simple tasks, their utility is lim-
ited. For instance, such a shell script could launch a pro-
gram on every node of the cluster to start a distributed
application. Similarly, a script can terminate a distrib-
uted application by sending halt commands to each of the
cluster’s nodes. But more sophisticated manipulations of
the cluster are often desired. For instance, a launching
application may scan the cluster, determine if any incom-
patible programs are running, kill only those, and auto-
matically start any services it needs. This behavior is
most easily coded using Phleet’s C++ interface.

5. Input Devices

Syzygy’s I/O framework for sharing input devices
over a network uses its core communications layer. Sev-
eral other software packages have facilities for sending
input device data over a network. VRPN provides this
functionality and supports a large array of input devices
[18]. Cluster Juggler adds cluster support to VR Juggler

by mirroring input device data over a network from a
device server to the render applications [13]. CAVELib
has also long had support for a tracker server that distrib-
utes tracker data over a network.

Syzygy’s input device framework has several impor-
tant features: integrated administration, the ability to
build virtual devices, robustness, and integrated data fil-
tering. Its input device servers are managed and config-
ured through Phleet, in the same way as all other compo-
nents of the distributed system. This simplifies cluster
administration and tightly couples input device managers
with application frameworks, simplifying use of the li-
brary. Also, in Syzygy, several input devices on different
cluster nodes can combine their outputs to form a virtual
device, which appears to the application as a single de-
vice. Furthermore, because the input servers are built on
the same networking technology as the rest of Syzygy,
they can stop, disappear, and restart while the application
is running, increasing the application’s robustness. Fi-
nally, the input device framework provides data filtering.
This can be used either for device calibration or for
changing input device events from one type into another,
letting different input devices drive the same program-
matic interface.

5.1. Input Device Driver Components

The three most important software components of the
I/O framework are input sources, input sinks, and input
nodes. An input source produces a stream of input
events, formatted as Syzygy messages. Data-producing
devices such as joysticks, motion trackers, or RS232 de-
vices interface with the rest of Syzygy via an input
source. Special input sources pull in data streams from
servers on the network. Input sinks, on the other hand,
absorb data. A network input sink streams its received
data onto the net. Other types of input sinks provide in-
terfaces to libraries besides Syzygy. For instance, con-
structing an input sink that posts properly formatted data
into a shared memory segment can support CAVELib
applications. Finally, input nodes glue together a collec-
tion of input sources and input sinks. An input node con-
tains a set of buttons, axes, and matrices whose values
are changed by data received from its connected input
sources. An input node also has management functions
to start, stop, and reset the flow of data through it by ma-
nipulating its connected input sources and sinks.

The I/O filters are also important objects. They pro-
vide hooks for modifying a data stream, for instance
sending raw motion tracking data through a calibration
routine, smoothing joystick values with a moving-
average filter, or removing extraneous button presses.
Chains of these filters are registered with an input node,
and they are applied, one by one, to the streams of data

DeviceServer
6DOF Sensor

Device Driver

InputSink:
1 transformation matrix

DeviceServer
Joystick

Device Driver

InputSink:
3 buttons + 2 axes

DeviceServer

InputSource InputSource

InputSink: 1 matrix, 3 buttons, 2 axes

to Applications

coming from the input sources before those streams are
passed on the input sinks.

5.2. Virtual devices

Using these sources and sinks, a virtual input device
can be built out of individual physical devices. A famil-
iar example is a VR wand consisting of a motion-tracking
sensor and a collection of buttons and axes. The buttons
and axes might be derived from a standalone joystick
whose driver runs on one cluster node, while the motion
tracker’s transformation matrix is posted to the network
from a different cluster node. Each device sends its
stream of input events to the network via network input
sinks; the streams are combined at an input node con-
nected to the application, presenting the illusion of a sin-
gle input device (figure 3).

Figure 3. Tree of input devices for a VR wand.

5.3. Filters

The Syzygy input device framework includes support
for input event filtering. Each filter operates on a stream
of input events, possibly maintaining internal state while
it operates, and outputs a stream of input events. Multi-
ple filters can be chained together to produce a variety of
effects. Calibration of input devices can be represented
as a filter on a data stream. For instance, a filter can en-
capsulate rotating a 6DOF device’s sensor values before
they are reported to an application. Filters can also work
around OS idiosyncrasies. For instance, joystick values
are reported using different ranges and offsets on Win-
dows and Linux. Separate filters for each OS easily con-
vert these values to a standard range.

Filters separate input device drivers from the interface
requirements for a given class of applications. It is in-
convenient to write a separate application interface for
each input device. However, due to the expense of

6DOF input devices, VR applications need multimodal
input support, as is found in the CAVELib simulator.
However, in this case application functionality is
changed as well as input modality [5]. DIVERSE’s
6DOF simulator connects to a VR application, using a 2-
D GUI to manipulate the position and orientation of sen-
sors [10]. Syzygy has a similar 6DOF input device simu-
lator, although here a 3-D representation is directly ma-
nipulated. The Syzygy simulator can be conceptualized
as a filter that converts mouse/keyboard events into
6DOF tracker events. Similarly, joystick support can be
added to a VR application by using a filter to translate
joystick events into tracker events.

6. Sound

Sound in Syzygy uses the same distributed scene
graph infrastructure that is used in the distributed scene
graph application framework. Of course, here the scene
graph is concerned with sound data instead of graphics.
One node in the cluster is a server, generating a scene
graph; this is propagated to other nodes running a Soun-
dRender program that turns the scene graph into actual
sounds. The sound scene graph includes a stack of
OpenGL-style transformation matrices, so sounds can be
placed relative to any frame of reference used by the vis-
ual scene. A sound’s position can be fixed with respect
to the world; with respect to a navigation matrix if the
user flies through the world; or with respect to some in-
dependently moving (graphical) object. If the position
and orientation of the user’s head is tracked, all playing
sounds are properly rendered from that point of view,
updated at the same rate as the tracking data.

Nonspatial attributes of a sound are conventional:
name of sound file, amplitude scalar, flags indicating
triggered (one-shot) or looping behavior. Global attrib-
utes of the sound library are also conventional: which
sound card to use, sampling rate, overall amplitude, and
amplitude roll-off as a function of distance. This simple
design is consistent with the “commodity” philosophy of
Syzygy: it is no more tied to a single sound card or a
sound library than it is to a single graphics card or operat-
ing system.

Of course to such sound libraries Syzygy brings its
usual features: dynamically restartable renderers, syn-
chronized rendering from multiple viewpoints, and so on.
Restartable renderers accelerate development: without
affecting the VR application one can modify sound ren-
dering aspects such as sampling rate, CPU load, sound
card, or, for that matter, swap out the entire PC. Going a
step farther, several rendering PC’s can even be driven
simultaneously from the host application for rigorous
performance comparison from the same live data stream.
A practical application of multiple-viewpoint playback is
providing a multi-headphone sound display, with the

same sensory data played on each set of headphones.
This can provide a high-quality, shared sonic experience
in an echo-intensive environment like a rigid-walled, six-
sided CAVE.

Network-based sound tools for VR such as VSS [2]
can also have multiple renderers for a single VR scene.
If synchronization is tight enough, parallel rendering al-
lows individual components of a complex soundscape to
be rendered on several low-cost computers, combining
their stereo outputs through a small mixer (the inexpen-
sive audio equivalent of a video compositor). However,
Syzygy is unique in supporting multiple listening view-
points and allowing sound renderers to restart without
affecting the host application.

7. Application frameworks

Syzygy currently supports two application frame-
works built using its lower-level, reusable components.
These frameworks do the traditional work of a VR li-
brary, managing input devices, sound sources, and con-
figuring displays. One framework is a distributed scene
graph. The other is a means for constructing applications
which can have multiple instances synchronized across
the cluster nodes, called the master/slave framework.
The Princeton Omnimedia group [4] and others have
experimented with cluster graphics using synchronized
application instances.

The graphics portions of the Syzygy VR frameworks
are described in [17]; an early description of the distrib-
uted scene graph framework appears in [15]. We now
discuss the trade-offs for using each. No single approach
for writing a programming framework can simultane-
ously optimize flexibility, portability between the cluster
and a single computer, and efficiency.

For instance, emphasizing portability between the
cluster and traditional single-box VR compromises flexi-
bility. If the same single-box application runs unaltered
on each node, it is difficult to access a real-time data
stream from a single external network source. Writing
output to disk uniquely across the cluster is also difficult.
Furthermore, data sharing is restricted to paths implicit in
the underlying library, for example through VR Juggler
input events. Finally, all nodes may have to begin opera-
tion at the same time: this reduces fault tolerance, an
important characteristic for cluster-based software. (Af-
ter all, n nodes exhibit defects at least n times as often as
one node.)

Reasonably general methods of running synchronized
copies of an application across cluster nodes cannot
guarantee consistent graphics state. However, such
methods let the programmer create custom protocols for
data sharing between application components. The
Syzygy master/slave framework follows this pattern,
emphasizing efficiency at the expense of flexibility. In

contrast, some application structures guarantee consis-
tency across a cluster’s multiple displays by forcing the
programmer to funnel all display information through a
particular protocol. Syzygy’s distributed scene graph
framework follows this approach, emphasizing flexibility
at the expense of efficiency.

Each application framework contains code to simplify
launching distributed applications. When an application
starts up, it probes the cluster to determine if other run-
ning applications are holding resources it needs, such as
graphics screens or input devices. If such are running, it
gracefully terminates them.

Next, it launches the services it needs. In the distrib-
uted scene graph framework case, szgrender is launched
on every render node, DeviceServer is launched on nodes
connected to input devices, and SoundRender is launched
on nodes that will produce sound. In the master/slave
framework case, slave instances of the application are
launched on each render node, while input devices and
sound are handed as before. During this launch process a
lock inside Phleet prevents other applications from
launching, lest the distributed system get into an incon-
sistent state.

In this way, launching an application on the cluster
looks to the user exactly like launching one on a single
computer, and the application itself contains code to con-
figure the network. This is in contrast to the scripts often
used to launch cluster applications. Furthermore, every
component of the distributed application can be reliably
halted by sending a single kill message to the master ap-
plication instance. This greatly simplifies application
management over, for instance, explicit kill scripts. In
demonstrations of a 6-walled immersive projection envi-
ronment (figure 1) this has been robust enough to cycle
through a dozen varied applications, one every minute or
two, for ten hours straight.

7.1. Distributed Scene Graph Framework

Syzygy’s distributed scene graph application frame-
work guarantees visual consistency across the cluster’s
render nodes, regardless of the application using it. This
comes at the cost of visual output being restricted to the
scene graph API. Still, this is a reasonable trade-off
since the scene graph can be accessed in a multi-threaded
fashion, indeed arbitrarily manipulated. In contrast, most
other styles of cluster VR impose programming con-
straints like prohibiting threads, mandating application
state modification only through fixed methods, or making
rules for using shared memory to maintain visual consis-
tency across render nodes.

The distributed scene graph is built on top of a general
distributed database framework, which is shared with the
Syzygy sound renderer. Specific database implementa-
tions use different languages of messages and different

node types, but they share a common structure. The da-
tabase essentially is a tree of named nodes. Database
nodes are distributed across the cluster by being packed
into Syzygy messages, transmitted, and getting unpacked
by the recipient. The database is altered by creating new
nodes, deleting existing nodes, or sending messages to
alter existing nodes.

The database framework also includes functionality
for database replication. A sequence of messages to rec-
reate the current database state can be produced at any
time. When sent across the network and received by an
empty database, this message stream creates a synchro-
nized database copy. Locking prevents database state
being altered during replication.

The distributed scene graph includes a variety of node
types specific to graphics: transforms, points, triangle
sets, line sets, texture coordinates, materials, texture bit-
maps, and text billboards, among others. These elements
are manipulated via a special graphics language built
from Syzygy message types. Instead of forcing the pro-
grammer to manually create these messages and send
them to the appropriate nodes in the database, Syzygy
includes a wrapper graphics API that hides these details
of message generation and routing.

Here are three examples of how the graphics database
works. First, suppose a texture node has been created,
holding a particular bitmap. This bitmap can be changed
by sending the node a message asking it to load a differ-
ent texture file from disk. Second, a “visibility” node’s
state toggles whether the subtree of nodes below it is
rendered. This state can be changed by sending a mes-
sage to the node. Third, a geometry node, such as a col-
lection of point coordinates, can be altered only partially,
thus saving communications bandwidth. For instance, to
change the coordinates of only a few points in a points
node, it can be sent a message containing just the coordi-
nates that need changing instead of coordinates for every
point in the node.

The distributed scene graph application framework
goes beyond just the distributed scene graph itself, which
is really just an example of a media protocol. First of all,
there exists a standalone render client, szgrender, an ex-
ample of a media object, that runs on each rendering
computer in the cluster and accepts a stream of graphics
information from whatever distributed scene graph appli-
cation is currently running. Render clients can be
stopped, started, added, or removed at any time while the
application is running; active displays remain perfectly
synchronized. The application can even be stopped, re-
compiled, and restarted while the render clients run.

The application framework also manages sound and
input devices. The sound media object, SoundRender,
and the I/O object, DeviceServer, have all of szgrender’s
beneficial network characteristics since they use the same
underlying communications layer.

The application framework has an API for access to
connected input devices and for creating spatialized
sounds through the Syzygy sound framework. From the
programmer’s point of view, the application framework
conveniently has no event loop. The framework simply
manages configuration of the distributed system. From
that point on, the user manipulates the virtual world di-
rectly and in an arbitrary manner, with guaranteed consis-
tency in the display. All functionality occurs implicitly:
code need not be separated into callbacks for graphics
rendering, input events, and so on. The scene graph can
be updated in any manner, even from multiple threads;
user input can be obtained in any manner. This contrasts
with most other methods of constructing VR applica-
tions.

7.2. Master/Slave Framework

Syzygy provides an alternative application framework
for cases where the distributed scene graph application
framework described above is inappropriate. This may
be because the application’s graphics cannot be practi-
cally expressed through the scene graph API. The appli-
cation may also need a more efficient data-sharing proto-
col, customized to take advantage of its domain knowl-
edge. For instance, a volume visualization application
might have a unique way of compressing voxel data.

The master/slave application framework gives the
programmer a reasonably general way to construct appli-
cations that can have multiple copies running synchro-
nized across cluster nodes. One copy of the application
is the master, collecting user input, performing computa-
tions on it, and distributing the results to the other nodes,
called slaves. As with the distributed scene graph
framework, copies of the application can be stopped and
restarted at any time, automatically finding each other
again and resynchronizing. This again lets the display of
a running application move across devices.

The master/slave application framework uses an event
loop with callbacks. During initialization, blocks of
memory are registered with the framework. The frame-
work will transfer memory from the master to the slaves
at a well-defined point in the event loop, translating bi-
nary formats as necessary between machines.

We now describe the event loop in some detail. First
the master polls the input device, recording the values of
its various buttons, axes, and 6DOF sensors. Next, all
application instances execute a pre-exchange callback,
possibly differently for the master as compared to the
slaves. On the master, this callback fills the registered
memory blocks with information to be transferred, possi-
bly as computed from input device files, network data,
file I/O, or other things. After this, the master transfers
memory to the slaves. Then all application instances,
master and slaves, execute a post-exchange callback. At

this point, the registered memory is in a consistent state
as is every copy’s local view of the state of the input de-
vice, timestamp, and so on. After this the master exe-
cutes a sound-rendering callback, and then all application
instances then execute a draw callback, synchronize over
the network, and finally swap graphics buffers.

Some data sharing is automatic between master and
slave application instances: input device information, a
timestamp, random number seeds, and a navigation ma-
trix. Consequently, viewer-type applications, especially
architectural walkthroughs, can be quickly built using the
master/slave framework with no explicit code for data
sharing. More complicated data sharing can always be
added explicitly.

Data consistency is not guaranteed, because of the
added flexibility given by the master/slave framework.
We assume that all information necessary to construct the
graphics state is shared. We also assume that the master
fills the registered memory blocks between the start of
the event loop and the start of the memory transfer.

8. Conclusion

Syzygy is a VR library that focuses on cluster comput-
ing. Instead of trying to present the developer or user
with the same picture whether the application is running
on a cluster or a single computer, it provides an API
tuned to the cluster setting. As such, it makes it easier to
write high performance VR software for this challenging
hardware platform. Furthermore, by exposing some clus-
ter complexities it can present a unified and simplified
management picture. This directly addresses one of the
problems of cluster-based VR: how to manage the result-
ing complex system.

Syzygy is free software licensed under the GNU
LGPL, downloadable from the web [16].

9. References

[1] R. Aydt. The Pablo Self-Defining Data Format.
ftp://vibes.cs.uiuc.edu/pub/Pablo.Release.5/SDDF/Documentati
on/SDDF.ps.gz, 2000.
[2] R. Bargar, I. Choi, S. Das, and C. Goudeseune. “Model-
Based Interactive Sound for an Immersive Virtual Environ-
ment.” Proc. Intl. Computer Music Conf. 1994:471-474.
[3] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. “VR Juggler: A Virtual Platform for Virtual
Reality Application Development.” IEEE Virtual Reality
2001:89-96.
[4] Y. Chen, H. Chen, D. Clark, Z. Liu, G. Wallace, and K. Li.
Software Environments for Cluster-based Display Systems.
http://www.cs.princeton.edu/omnimedia/papers/ccgrid.pdf,
2001.
[5] C. Cruz-Neira, D. Sandin, and T. DeFanti. “Surround-
Screen Projection-Based Virtual Reality: The Design and Im-

plementation of the CAVE.” Computer Graphics, ACM
SIGGRAPH 1993:135-142.
[6] I. Foster and C. Kesselman. “Globus: A Metacomputing
Infrastructure Toolkit.” Intl. J. Supercomputer Applications
11(2):115-128, 1997.
[7] G. Francis, J.M. Sullivan, and C. Hartman. “Computing
Sphere Eversions.” In Mathematical Visualization, (H.-C.
Hege, K. Polthier, eds.), Springer, Berlin, 1998, pp. 237-255.
[8] A. Grimshaw and W. Wulf. “The Legion Vision of a
Worldwide Virtual Computer.” Comm. ACM 40(1):39-45,
1997.
[9] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. “WireGL: A Scalable Graphics System for
Clusters.” Computer Graphics, ACM SIGGRAPH
2001:129-140.
[10] J. Kelso, S. Satterfield, L. Arsenault, and R. Kriz.
“DIVERSE: A Framework for Building Extensible and Recon-
figurable Device Independent Virtual Environments.” IEEE
Virtual Reality 2002:183-190.
[11] K. Li, H. Chen, Y. Chen, D.W. Clark, P. Cook, S.
Damianakis, G. Essl, A. Finkelstein, T. Funkhouser, A. Klein,
Z. Liu, E. Praun, R. Samanta, B. Shedd, J.P. Singh, G.
Tzanetakis, and J. Zheng. “Early Experiences and Challenges
in Building and Using a Scalable Display Wall System.” IEEE
Computer Graphics and Applications 20(4):671-680. 2000.
[12] B. MacIntyre and S. Feiner. “A Distributed 3D Graphics
Library.” Computer Graphics, ACM SIGGRAPH 1998:361-
370.
[13] E. Olson. Cluster Juggler – PC Cluster Virtual Reality.
M.Sc. thesis, Iowa State University, 2002.
[14] B. Raffin and J. Allard. Net Juggler.
http://sourceforge.net/projects/netjuggler, 2002.
[15] B. Schaeffer. A Software System for Inexpensive VR via
Graphics Clusters. http://elim.isl.uiuc.edu/ClusteredVR/paper/
dgdpaper.pdf, 2000.
[16] B. Schaeffer. Syzygy: A Toolkit for Virtual Reality on PC
Clusters. http://syzygy.isl.uiuc.edu/, 2002.
[17] B. Schaeffer. “Networking and Management Frameworks
for Cluster-Based Graphics.” Virtual Environment on a PC
Cluster Workshop, Protvino, Russia, 2002.
[18] R. Taylor, T. Hudson, A. Seeger, H. Weber, J. Juliano, A.
Helser. “VRPN: a device-independent, network-transparent VR
peripheral system.” Proc. ACM Symposium on Virtual Reality
Software and Technology 2001:55-61.
[19] H. Tramberend. “Avocado: A Distributed Virtual Reality
Framework.” IEEE Virtual Reality 1999:14-21.

	Introduction
	Previous work
	Infrastructure
	Phleet
	Phleet Infrastructure Programs
	Phleet from C++

	Input Devices
	Input Device Driver Components
	Virtual devices
	Filters

	Sound
	Application frameworks
	Distributed Scene Graph Framework
	Master/Slave Framework

	Conclusion
	References

