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Abstract 
 
The Syzygy software library consists of tools for programming VR applications on PC clusters.  Since the PC cluster 
environment presents application development constraints, it is impossible to simultaneously optimize for efficiency, 
flexibility, and portability between the single-computer and cluster cases.  Consequently Syzygy includes two application 
frameworks:  a distributed scene graph framework for rendering a single application’s graphics database on multiple 
rendering clients, and a master/slave framework for applications with multiple synchronized instances.  Syzygy includes a 
simple distributed OS and supports networked input devices, sound renderers, and graphics renderers, all built on a robust 
networking layer. 
 

 
1. Introduction 

In recent years, commodity PC platforms have 
become useful tools for scientific visualization and 
virtual reality.  Unfortunately the hardware of a single PC 
is too limited to support high-end applications.  Multi-
projector immersive environments need multiple high-
performance graphics cards to realize their full potential, 
an impossibility for a PC with only one AGP bus.  This 
limitation can be overcome by clustering multiple 
commodity computers together.  PC clusters are a viable 
alternative for high-end VR applications (figure 1). 

The PC cluster hardware platform is very different 
from shared-memory SMP systems that have commonly 
been used for VR.  As is common in engineering, this 
poses a trade-off: PC clusters have a favorable 
price/performance ratio at the cost of increased software 
complexity.  For instance, application management 
grows more complicated since built-in OS tools no 
longer suffice, especially for heterogeneous clusters.  
Also, communications bandwidth between components 
of the application can now be a bottleneck and 
synchronizing render nodes is more difficult, especially 
for highly animated applications using real-time data. 

Syzygy addresses the issues that make writing and 
running VR applications on a cluster more difficult than 
on a single computer, since it is designed from the 
ground up to support PC clusters.  Instead of adding clus-
ter support to a library primarily designed for single-
computer operation, it focuses on providing tools that 
directly address the challenges of cluster VR software.  

This design poses another engineering tradeoff:  although 
Syzygy runs on a single computer, other VR libraries 
may be better suited to such a configuration. 

 

 
 

Figure 1.  The ISL Cube running a Syzygy port of 
the “Optiverse” geometrical visualization [7]. 

 
Syzygy presents multiple VR application frameworks.  

Different applications may need different structures to 
achieve high performance despite the cluster’s limited 
communications bandwidth.  Another concern is keeping 



 

 

render nodes synchronized under the stress of highly 
animated applications.  Syzygy’s different application 
frameworks address these problems by optimizing net-
work usage patterns and synchronization methods for 
particular classes of applications. 

For applications that are highly animated or depend on 
external data sources, Syzygy provides a distributed 
scene graph framework.  On the other hand, for 
applications needing small amounts of shared data per 
frame, Syzygy’s master/slave application framework is 
ideal.  With this framework the programmer can define a 
custom data sharing protocol.  In fact this framework can 
even be useful for applications that require more data 
sharing, for instance if the shared data can be 
compressed.  Both of these frameworks support 
networked input devices and sound rendering. 

In keeping with its focus on clusters, Syzygy departs 
from the shared memory model used by most VR 
libraries.  Instead it uses message passing, a better fit to 
the cluster environment.  This message-passing 
architecture also eliminates common shared-memory 
programming errors and lets the underlying application 
framework more tightly control how data is shared and 
synchronized between application components.  

The cluster setting’s unique application management 
problems are handled by a simple distributed operating 
system, Phleet.  This system handles process and 
configuration management.  Phleet particularly simplifies 
configuration of the distributed system by storing the 
entire cluster’s configuration information in a network-
accessible database.  This database can be altered from 
the command line anywhere on the network, and avoids 
scattering configuration files across all the cluster PC’s. 

C++ details are found in the Syzygy references, 
tutorials and source code [16]. 

2. Previous work 

The past decade has seen much effort expended on 
VR library development, both commercial and open 
source.  Of particular note is the CAVELib, developed in 
the early 1990’s at the Electronic Visualization Lab [5].  
Initial versions of its immersive projection environment 
ran on a pair of networked SGI computers.  
Consequently, the CAVELib includes support for VR 
clustering.  The library shares some fixed data through 
the cluster, such as a navigational matrix and input 
device values.  Further data sharing can be done through 
a means of transferring blocks of memory between 
nodes.  In contrast, Syzygy provides more elaborate 
mechanisms for data sharing and makes these 
mechanisms central to its API. 

Another interesting software effort in this area is VR 
Juggler [3], a VR library similar in function to the 
CAVELib.  Two extensions provide clustering support, 

Net Juggler [14] and Cluster Juggler [13].  In each case, a 
full copy of the VR Juggler application runs on each ren-
der node of the cluster.  Applications share input events 
and are synchronized at the end of each drawn frame.  
Thus, application state remains consistent only if it solely 
depends on VR Juggler input events. 

While this approach has many advantages, notably 
code reuse, it prevents the developer from exploiting the 
cluster’s full power with highly optimized, application-
specific protocols.  Also, all nodes of the cluster must 
start at the same time, with new nodes unable to join 
later.  In contrast, nodes of a Syzygy application can join 
or leave the cluster during application operation.  The 
application’s display can even migrate across VR devices 
while it is running. 

Still another VR library is DIVERSE [10].  While this 
library does not explicitly support clustering, it does 
concern itself with networking infrastructure.  DIVERSE 
provides a framework for networked shared memory 
built around a push model.  This networked shared 
memory can be used to connect input devices to a VR 
application, or to construct shared virtual environments. 

Some projects in distributed graphics are also 
intimately related to this work.  For instance, the Avango 
project has investigated using a distributed database to 
implement shared virtual worlds [19].  Recently, they 
have adapted their research to clustered-based graphics as 
well.  Other projects like Repo 3D are also based on 
databases or scene graphs [12].  In addition, graphics 
projects like WireGL [9] and DGL [11] implement 
software infrastructure which drives a graphics cluster by 
distributing OpenGL primitives. 

Finally, Syzygy’s support for networked input devices 
is similar to the VRPN library [18].  Syzygy’s networked 
sound rendering has a precedent in the client/server 
model of the VSS sound server [2]. 

3. Infrastructure 

Syzygy’s layered architecture facilitates reuse of 
software components.  At the foundation is a 
communications layer.  This contains a wrapper library 
that hides the differences between Windows, Irix, and 
Linux sockets, threads, serial I/O, and other OS features, 
increasing application portability.  It also contains the 
Syzygy messaging infrastructure.  Syzygy components 
communicate through efficient binary-encoded messages, 
and this communications layer contains functions for 
defining message types, collections of message types 
(languages), translation between different machine-
dependent formats (e.g., endianness), byte-stream 
parsers, and so on.  The messaging infrastructure owes 
much to systems like CORBA, RPC, and lesser known 
packages like SDDF [1]. 
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The communications layer also has networking com-
ponents that send and receive data via Syzygy messages.  
Server components automatically manage connections 
and communications with multiple clients; client 
components connect to just a single server.  Robustness 
is built into this fundamental level by ensuring that 
components can connect in any order and can survive 
their connections disappearing at arbitrary times.  If a 
server disappears, its formerly connected clients will 
keep running, searching for a new server to which they 
can connect and resume operation.  This low-level 
functionality is reflected, for instance, in the ability of 
Syzygy applications to add or remove display computers 
at run time. 

Specific functional units are built on top of the com-
munications layer (figure 2).  First there are media proto-
cols.  There are client/server pairs for managing net-
worked synchronization primitives.  There are also units 
for transmitting and displaying graphics information and 
sound.  Next, Syzygy’s distributed operating system, 
Phleet, uses the same client/server object pairs.  Finally, 
on top of the communications layer Syzygy builds a net-
worked device I/O layer for moving data from input de-
vices like trackers to the virtual environment. 

By themselves these client/server pairs for the media 
protocols or the I/O framework are not very useful in a 
distributed setting.  However, when management and 
configuration functionality is added to them via Phleet, 
they become substantially more useful.  These network 
media objects can be semi-autonomous.  A sound ren-
derer can be managed remotely and receive sound play 
requests from anywhere on the network.  Similarly, a 
graphics renderer can have its viewport reconfigured on 
the fly, while it receives and displays graphics data from 
first one source and then another.  These renderers can be 
killed and relaunched remotely using Phleet, as well as 
moved around from node to node in the cluster.  Servers 
for streams of input device events can also be managed 
from anywhere in the cluster while the application runs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Software layers in Syzygy. 
 

These basic building blocks for graphics, sound, and 
input devices in the cluster can be manipulated remotely 
through Phleet, either from the shell prompt or from C++ 
code.  This allows the creation of sophisticated network-
aware application frameworks that coherently combine 
all the components for the programmer.  This can be 
done in different ways, given different application re-
quirements;  Syzygy currently implements two different 
application frameworks. 

4. Phleet 

Phleet is Syzygy’s distributed operating system.  In 
concept, it is influenced by Grid operating systems 
Globus [6] and Legion [8].  Most importantly, it provides 
facilities for stopping, starting, and inspecting processes 
on various nodes in the cluster.  It has a built-in mecha-
nism for passing messages to running processes.  Phleet 
also provides a network-accessible parameter database 
that replaces the configuration files that might otherwise 
be scattered across all the machines in the cluster.  This 
greatly simplifies administration.  Finally, Phleet’s global 
locks let complicated manipulations of cluster state be 
done atomically.  These are especially important for ap-
plication launching.  Syzygy’s application frameworks 
examine cluster state on launch, automatically executing 
needed helper programs and terminating incompatible 
ones.  Cluster-level locking prevents other applications 
from interfering with this process and leaving the cluster 
in an inconsistent state. 

Because it is built on Syzygy’s core networking layer, 
Phleet can forge a heterogeneous system into a single 
cluster.  It also has a flexible interface: all of its function-
ality can be accessed from either the command line or 
from C++. 

4.1. Phleet Infrastructure Programs 

From the shell prompt, Phleet looks like a collection 
of executables.  At its core is the szgserver program that 
manages the Syzygy cluster.  This program stores an 
online database of attributes of each host in the network.  
Different attributes are assigned to different Phleet users, 
so several developers can simultaneously “log in” to the 
cluster and then independently query and modify the da-
tabase.  Thus, each developer can run the same program 
on the same cluster with their own configuration. 

The szgserver program also maintains a process table 
of which programs are running on which hosts.  Each 
entry contains the host name, the application name, and a 
numeric ID unique across the cluster (much like a Unix 
process ID).  Entries are automatically added to and re-
moved from the table as programs start up and terminate.  
The szgserver can also transfer messages between con-
nected processes.  However, for efficiency most Syzygy 



 

 

components only use the szgserver to configure direct 
connections amongst themselves. 

Several features of the szgserver program ease the 
creating and maintaining of clusters.  Multiple szgservers 
can run simultaneously on a network, each defining a 
cluster.  Cluster membership is dynamic: a node can 
switch clusters at any time.  In addition, an automatic 
discovery mechanism lets nodes spontaneously form 
clusters, without specific configuration.  Finally, the 
szgserver can provide DNS functionality, which is con-
venient if a server is not available or if noncanonical host 
names are desired. 

Phleet includes many other programs.  A critical one 
is szgd, a remote execution daemon with uniform opera-
tion across Syzygy’s supported host operating systems.  
Each node in a Syzygy cluster runs an instance of szgd, 
letting distributed applications be managed from any-
where on the network.  Phleet also includes a host of 
command line programs for managing the distributed 
operating system: querying and altering the configuration 
database, launching or killing processes on a cluster 
node, listing the running processes on the cluster, and so 
on. 

4.2. Phleet from C++ 

From the programmer’s point of view, Phleet’s inter-
face is a single C++ class.  Constructing an object of this 
class implicitly connects the program to the cluster.  This 
object’s methods can then be called to do anything in 
Phleet that is possible from a shell prompt, though with 
increased flexibility.  In fact most of Phleet’s command-
line programs simply wrap these methods. 

The C++ interface can do things impossible from the 
command line.  While the command line programs can 
be scripted to perform simple tasks, their utility is lim-
ited.  For instance, such a shell script could launch a pro-
gram on every node of the cluster to start a distributed 
application.  Similarly, a script can terminate a distrib-
uted application by sending halt commands to each of the 
cluster’s nodes.  But more sophisticated manipulations of 
the cluster are often desired.  For instance, a launching 
application may scan the cluster, determine if any incom-
patible programs are running, kill only those, and auto-
matically start any services it needs.  This behavior is 
most easily coded using Phleet’s C++ interface.  

5. Input Devices 

Syzygy’s I/O framework for sharing input devices 
over a network uses its core communications layer.  Sev-
eral other software packages have facilities for sending 
input device data over a network.  VRPN provides this 
functionality and supports a large array of input devices 
[18].  Cluster Juggler adds cluster support to VR Juggler 

by mirroring input device data over a network from a 
device server to the render applications [13].  CAVELib 
has also long had support for a tracker server that distrib-
utes tracker data over a network. 

Syzygy’s input device framework has several impor-
tant features: integrated administration, the ability to 
build virtual devices, robustness, and integrated data fil-
tering.  Its input device servers are managed and config-
ured through Phleet, in the same way as all other compo-
nents of the distributed system.  This simplifies cluster 
administration and tightly couples input device managers 
with application frameworks, simplifying use of the li-
brary.  Also, in Syzygy, several input devices on different 
cluster nodes can combine their outputs to form a virtual 
device, which appears to the application as a single de-
vice.  Furthermore, because the input servers are built on 
the same networking technology as the rest of Syzygy, 
they can stop, disappear, and restart while the application 
is running, increasing the application’s robustness.  Fi-
nally, the input device framework provides data filtering.  
This can be used either for device calibration or for 
changing input device events from one type into another, 
letting different input devices drive the same program-
matic interface.  

5.1. Input Device Driver Components 

The three most important software components of the 
I/O framework are input sources, input sinks, and input 
nodes.  An input source produces a stream of input 
events, formatted as Syzygy messages.  Data-producing 
devices such as joysticks, motion trackers, or RS232 de-
vices interface with the rest of Syzygy via an input 
source.  Special input sources pull in data streams from 
servers on the network.  Input sinks, on the other hand, 
absorb data.  A network input sink streams its received 
data onto the net.  Other types of input sinks provide in-
terfaces to libraries besides Syzygy.  For instance, con-
structing an input sink that posts properly formatted data 
into a shared memory segment can support CAVELib 
applications.  Finally, input nodes glue together a collec-
tion of input sources and input sinks.  An input node con-
tains a set of buttons, axes, and matrices whose values 
are changed by data received from its connected input 
sources.  An input node also has management functions 
to start, stop, and reset the flow of data through it by ma-
nipulating its connected input sources and sinks. 

The I/O filters are also important objects.  They pro-
vide hooks for modifying a data stream, for instance 
sending raw motion tracking data through a calibration 
routine, smoothing joystick values with a moving-
average filter, or removing extraneous button presses.  
Chains of these filters are registered with an input node, 
and they are applied, one by one, to the streams of data 
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coming from the input sources before those streams are 
passed on the input sinks. 

5.2. Virtual devices 

Using these sources and sinks, a virtual input device 
can be built out of individual physical devices.  A famil-
iar example is a VR wand consisting of a motion-tracking 
sensor and a collection of buttons and axes.  The buttons 
and axes might be derived from a standalone joystick 
whose driver runs on one cluster node, while the motion 
tracker’s transformation matrix is posted to the network 
from a different cluster node.  Each device sends its 
stream of input events to the network via network input 
sinks; the streams are combined at an input node con-
nected to the application, presenting the illusion of a sin-
gle input device (figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Tree of input devices for a VR wand. 

5.3. Filters 

The Syzygy input device framework includes support 
for input event filtering.  Each filter operates on a stream 
of input events, possibly maintaining internal state while 
it operates, and outputs a stream of input events.  Multi-
ple filters can be chained together to produce a variety of 
effects.  Calibration of input devices can be represented 
as a filter on a data stream.  For instance, a filter can en-
capsulate rotating a 6DOF device’s sensor values before 
they are reported to an application.  Filters can also work 
around OS idiosyncrasies.  For instance, joystick values 
are reported using different ranges and offsets on Win-
dows and Linux.  Separate filters for each OS easily con-
vert these values to a standard range. 

Filters separate input device drivers from the interface 
requirements for a given class of applications.  It is in-
convenient to write a separate application interface for 
each input device.  However, due to the expense of 

6DOF input devices, VR applications need multimodal 
input support, as is found in the CAVELib simulator.  
However, in this case application functionality is 
changed as well as input modality [5].  DIVERSE’s 
6DOF simulator connects to a VR application, using a 2-
D GUI to manipulate the position and orientation of sen-
sors [10].  Syzygy has a similar 6DOF input device simu-
lator, although here a 3-D representation is directly ma-
nipulated.  The Syzygy simulator can be conceptualized 
as a filter that converts mouse/keyboard events into 
6DOF tracker events.  Similarly, joystick support can be 
added to a VR application by using a filter to translate 
joystick events into tracker events. 

6. Sound 

Sound in Syzygy uses the same distributed scene 
graph infrastructure that is used in the distributed scene 
graph application framework.  Of course, here the scene 
graph is concerned with sound data instead of graphics.  
One node in the cluster is a server, generating a scene 
graph; this is propagated to other nodes running a Soun-
dRender program that turns the scene graph into actual 
sounds.  The sound scene graph includes a stack of 
OpenGL-style transformation matrices, so sounds can be 
placed relative to any frame of reference used by the vis-
ual scene.  A sound’s position can be fixed with respect 
to the world; with respect to a navigation matrix if the 
user flies through the world; or with respect to some in-
dependently moving (graphical) object.  If the position 
and orientation of the user’s head is tracked, all playing 
sounds are properly rendered from that point of view, 
updated at the same rate as the tracking data. 

Nonspatial attributes of a sound are conventional:  
name of sound file, amplitude scalar, flags indicating 
triggered (one-shot) or looping behavior.  Global attrib-
utes of the sound library are also conventional:  which 
sound card to use, sampling rate, overall amplitude, and 
amplitude roll-off as a function of distance.  This simple 
design is consistent with the “commodity” philosophy of 
Syzygy:  it is no more tied to a single sound card or a 
sound library than it is to a single graphics card or operat-
ing system. 

Of course to such sound libraries Syzygy brings its 
usual features:  dynamically restartable renderers, syn-
chronized rendering from multiple viewpoints, and so on.  
Restartable renderers accelerate development:  without 
affecting the VR application one can modify sound ren-
dering aspects such as sampling rate, CPU load, sound 
card, or, for that matter, swap out the entire PC.  Going a 
step farther, several rendering PC’s can even be driven 
simultaneously from the host application for rigorous 
performance comparison from the same live data stream.  
A practical application of multiple-viewpoint playback is 
providing a multi-headphone sound display, with the 



 

 

same sensory data played on each set of headphones.  
This can provide a high-quality, shared sonic experience 
in an echo-intensive environment like a rigid-walled, six-
sided CAVE. 

Network-based sound tools for VR such as VSS [2] 
can also have multiple renderers for a single VR scene.  
If synchronization is tight enough, parallel rendering al-
lows individual components of a complex soundscape to 
be rendered on several low-cost computers, combining 
their stereo outputs through a small mixer (the inexpen-
sive audio equivalent of a video compositor).  However, 
Syzygy is unique in supporting multiple listening view-
points and allowing sound renderers to restart without 
affecting the host application.  

7. Application frameworks 

Syzygy currently supports two application frame-
works built using its lower-level, reusable components.  
These frameworks do the traditional work of a VR li-
brary, managing input devices, sound sources, and con-
figuring displays.  One framework is a distributed scene 
graph.  The other is a means for constructing applications 
which can have multiple instances synchronized across 
the cluster nodes, called the master/slave framework.  
The Princeton Omnimedia group [4] and others have 
experimented with cluster graphics using synchronized 
application instances. 

The graphics portions of the Syzygy VR frameworks 
are described in [17]; an early description of the distrib-
uted scene graph framework appears in [15].  We now 
discuss the trade-offs for using each.  No single approach 
for writing a programming framework can simultane-
ously optimize flexibility, portability between the cluster 
and a single computer, and efficiency.   

For instance, emphasizing portability between the 
cluster and traditional single-box VR compromises flexi-
bility.  If the same single-box application runs unaltered 
on each node, it is difficult to access a real-time data 
stream from a single external network source.  Writing 
output to disk uniquely across the cluster is also difficult.  
Furthermore, data sharing is restricted to paths implicit in 
the underlying library, for example through VR Juggler 
input events.  Finally, all nodes may have to begin opera-
tion at the same time:  this reduces fault tolerance, an 
important characteristic for cluster-based software.  (Af-
ter all, n nodes exhibit defects at least n times as often as 
one node.) 

Reasonably general methods of running synchronized 
copies of an application across cluster nodes cannot 
guarantee consistent graphics state.  However, such 
methods let the programmer create custom protocols for 
data sharing between application components.  The 
Syzygy master/slave framework follows this pattern, 
emphasizing efficiency at the expense of flexibility.  In 

contrast, some application structures guarantee consis-
tency across a cluster’s multiple displays by forcing the 
programmer to funnel all display information through a 
particular protocol.  Syzygy’s distributed scene graph 
framework follows this approach, emphasizing flexibility 
at the expense of efficiency. 

Each application framework contains code to simplify 
launching distributed applications.  When an application 
starts up, it probes the cluster to determine if other run-
ning applications are holding resources it needs, such as 
graphics screens or input devices.  If such are running, it 
gracefully terminates them. 

Next, it launches the services it needs.  In the distrib-
uted scene graph framework case, szgrender is launched 
on every render node, DeviceServer is launched on nodes 
connected to input devices, and SoundRender is launched 
on nodes that will produce sound.  In the master/slave 
framework case, slave instances of the application are 
launched on each render node, while input devices and 
sound are handed as before.  During this launch process a 
lock inside Phleet prevents other applications from 
launching, lest the distributed system get into an incon-
sistent state.  

In this way, launching an application on the cluster 
looks to the user exactly like launching one on a single 
computer, and the application itself contains code to con-
figure the network.  This is in contrast to the scripts often 
used to launch cluster applications.  Furthermore, every 
component of the distributed application can be reliably 
halted by sending a single kill message to the master ap-
plication instance.  This greatly simplifies application 
management over, for instance, explicit kill scripts.  In 
demonstrations of a 6-walled immersive projection envi-
ronment (figure 1) this has been robust enough to cycle 
through a dozen varied applications, one every minute or 
two, for ten hours straight. 

7.1. Distributed Scene Graph Framework 

Syzygy’s distributed scene graph application frame-
work guarantees visual consistency across the cluster’s 
render nodes, regardless of the application using it.  This 
comes at the cost of visual output being restricted to the 
scene graph API.  Still, this is a reasonable trade-off 
since the scene graph can be accessed in a multi-threaded 
fashion, indeed arbitrarily manipulated.  In contrast, most 
other styles of cluster VR impose programming con-
straints like prohibiting threads, mandating application 
state modification only through fixed methods, or making 
rules for using shared memory to maintain visual consis-
tency across render nodes. 

The distributed scene graph is built on top of a general 
distributed database framework, which is shared with the 
Syzygy sound renderer.  Specific database implementa-
tions use different languages of messages and different 



 

 

node types, but they share a common structure.  The da-
tabase essentially is a tree of named nodes.  Database 
nodes are distributed across the cluster by being packed 
into Syzygy messages, transmitted, and getting unpacked 
by the recipient.  The database is altered by creating new 
nodes, deleting existing nodes, or sending messages to 
alter existing nodes.  

The database framework also includes functionality 
for database replication.  A sequence of messages to rec-
reate the current database state can be produced at any 
time.  When sent across the network and received by an 
empty database, this message stream creates a synchro-
nized database copy.  Locking prevents database state 
being altered during replication. 

The distributed scene graph includes a variety of node 
types specific to graphics: transforms, points, triangle 
sets, line sets, texture coordinates, materials, texture bit-
maps, and text billboards, among others.  These elements 
are manipulated via a special graphics language built 
from Syzygy message types.  Instead of forcing the pro-
grammer to manually create these messages and send 
them to the appropriate nodes in the database, Syzygy 
includes a wrapper graphics API that hides these details 
of message generation and routing.  

Here are three examples of how the graphics database 
works.  First, suppose a texture node has been created, 
holding a particular bitmap.  This bitmap can be changed 
by sending the node a message asking it to load a differ-
ent texture file from disk.  Second, a “visibility” node’s 
state toggles whether the subtree of nodes below it is 
rendered.  This state can be changed by sending a mes-
sage to the node.  Third, a geometry node, such as a col-
lection of point coordinates, can be altered only partially, 
thus saving communications bandwidth.  For instance, to 
change the coordinates of only a few points in a points 
node, it can be sent a message containing just the coordi-
nates that need changing instead of coordinates for every 
point in the node. 

The distributed scene graph application framework 
goes beyond just the distributed scene graph itself, which 
is really just an example of a media protocol.  First of all, 
there exists a standalone render client, szgrender, an ex-
ample of a media object, that runs on each rendering 
computer in the cluster and accepts a stream of graphics 
information from whatever distributed scene graph appli-
cation is currently running.  Render clients can be 
stopped, started, added, or removed at any time while the 
application is running; active displays remain perfectly 
synchronized.  The application can even be stopped, re-
compiled, and restarted while the render clients run.  

The application framework also manages sound and 
input devices.  The sound media object, SoundRender, 
and the I/O object, DeviceServer, have all of szgrender’s 
beneficial network characteristics since they use the same 
underlying communications layer. 

The application framework has an API for access to 
connected input devices and for creating spatialized 
sounds through the Syzygy sound framework.  From the 
programmer’s point of view, the application framework 
conveniently has no event loop.  The framework simply 
manages configuration of the distributed system.  From 
that point on, the user manipulates the virtual world di-
rectly and in an arbitrary manner, with guaranteed consis-
tency in the display.  All functionality occurs implicitly: 
code need not be separated into callbacks for graphics 
rendering, input events, and so on.  The scene graph can 
be updated in any manner, even from multiple threads; 
user input can be obtained in any manner.  This contrasts 
with most other methods of constructing VR applica-
tions. 

7.2. Master/Slave Framework 

Syzygy provides an alternative application framework 
for cases where the distributed scene graph application 
framework described above is inappropriate.  This may 
be because the application’s graphics cannot be practi-
cally expressed through the scene graph API.  The appli-
cation may also need a more efficient data-sharing proto-
col, customized to take advantage of its domain knowl-
edge.  For instance, a volume visualization application 
might have a unique way of compressing voxel data. 

The master/slave application framework gives the 
programmer a reasonably general way to construct appli-
cations that can have multiple copies running synchro-
nized across cluster nodes.  One copy of the application 
is the master, collecting user input, performing computa-
tions on it, and distributing the results to the other nodes, 
called slaves.  As with the distributed scene graph 
framework, copies of the application can be stopped and 
restarted at any time, automatically finding each other 
again and resynchronizing.  This again lets the display of 
a running application move across devices. 

The master/slave application framework uses an event 
loop with callbacks.  During initialization, blocks of 
memory are registered with the framework.  The frame-
work will transfer memory from the master to the slaves 
at a well-defined point in the event loop, translating bi-
nary formats as necessary between machines. 

We now describe the event loop in some detail.  First 
the master polls the input device, recording the values of 
its various buttons, axes, and 6DOF sensors.  Next, all 
application instances execute a pre-exchange callback, 
possibly differently for the master as compared to the 
slaves.  On the master, this callback fills the registered 
memory blocks with information to be transferred, possi-
bly as computed from input device files, network data, 
file I/O, or other things.  After this, the master transfers 
memory to the slaves.  Then all application instances, 
master and slaves, execute a post-exchange callback.  At 



 

 

this point, the registered memory is in a consistent state 
as is every copy’s local view of the state of the input de-
vice, timestamp, and so on.  After this the master exe-
cutes a sound-rendering callback, and then all application 
instances then execute a draw callback, synchronize over 
the network, and finally swap graphics buffers. 

Some data sharing is automatic between master and 
slave application instances:  input device information, a 
timestamp, random number seeds, and a navigation ma-
trix.  Consequently, viewer-type applications, especially 
architectural walkthroughs, can be quickly built using the 
master/slave framework with no explicit code for data 
sharing.  More complicated data sharing can always be 
added explicitly. 

Data consistency is not guaranteed, because of the 
added flexibility given by the master/slave framework.  
We assume that all information necessary to construct the 
graphics state is shared.  We also assume that the master 
fills the registered memory blocks between the start of 
the event loop and the start of the memory transfer.  

8. Conclusion 

Syzygy is a VR library that focuses on cluster comput-
ing.  Instead of trying to present the developer or user 
with the same picture whether the application is running 
on a cluster or a single computer, it provides an API 
tuned to the cluster setting.  As such, it makes it easier to 
write high performance VR software for this challenging 
hardware platform.  Furthermore, by exposing some clus-
ter complexities it can present a unified and simplified 
management picture.  This directly addresses one of the 
problems of cluster-based VR:  how to manage the result-
ing complex system. 

Syzygy is free software licensed under the GNU 
LGPL, downloadable from the web [16]. 
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