
Myriad: Scalable VR via Peer-to-Peer Connectivity,
PC Clustering, and Transient Inconsistency

Benjamin Schaeffer†
schaeffr@uiuc.edu

Peter Brinkmann††
brinkman@math.tu-berlin.de

George Francis†
gfrancis@uiuc.edu

Camille Goudeseune†
cog@uiuc.edu

Jim Crowell†
jimc@uiuc.edu

Hank Kaczmarski†
hank@isl.uiuc.edu

ABSTRACT
Distributed scene graphs are important in virtual reality, both in
collaborative virtual environments and in cluster rendering. In
Myriad, individual scene graphs form a peer-to-peer network
whose connections filter scene graph updates and create flexible
relationships between scene graph nodes in the various peers.
Modern scalable visualization systems often feature high
intracluster throughput, but collaborative virtual environments
(VEs) over a WAN share data at much lower rates, complicating
the use of one scene graph system across the whole application.
To avoid these difficulties, Myriad uses fine-grained sharing,
whereby sharing properties of individual scene graph nodes can
be dynamically changed from C++ and Python, and transient
inconsistency, which relaxes resource requirements in
collaborative VEs. A test application, WorldWideCrowd,
implements these methods to demonstrate collaborative
prototyping of a 300-avatar crowd animation viewed on two PC-
cluster displays and edited on low-powered laptops, desktops, and
even over a WAN.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism – virtual reality

General Terms
Performance, design.

Keywords
Virtual environments, PC cluster, peer-to-peer.

1. INTRODUCTION
Myriad achieves scalability for collaborative virtual worlds by (1)
peer-to-peer connectivity using point-to-point communications,
(2) fine-grained sharing controllable down to the level of an
individual scene graph node, (3) transient inconsistency, (4) self-
regulating feedback along connections between peers, and (5) PC
cluster visualization.

We call each scene graph, along with its network connections and
machinery for filtering update messages, a reality peer. It is
implemented as a C++ object. Reality peers are analogous to

constructions in other distributed VR systems such as locales [7]
or worlds [2]. A reality map filters messages on each end of the
connection between reality peers, enabling Myriad’s fine-grained
sharing (see Section 6). The reality peers in a given network need
not all have the same contents. Each might hold only part of a
larger environment, different versions of the same environment,
or partially shared versions of a single environment. All of these
conditions create inconsistency. However, Myriad provides an
API by which the system and its users can manage inconsistency,
both creating and destroying it. Since this inconsistency is
tolerable, correctable, and even sometimes desirable, we say that
Myriad has transient inconsistency.

These concepts are explored in WorldWideCrowd, a collaborative
prototyping application for assembling avatar mobs. Our test case
uses 3000avatars, each with 20 bones animated by 60 frame per
second (fps) motion-capture clips. Within the reality peers hosting
the mob’s pieces, the avatar motions generate 360,000 scene
graph updates per second. In the current unoptimized system,
each bone update creates a separate message containing a 4x4
matrix, about 100 bytes including the message header. To view,
navigate, and collaboratively edit this scene over low bandwidth
WAN connections requires all of Myriad’s features.

Figure 1. A VR view of Cubist-like segmented avatars in

the WorldWideCrowd prototyper.

In general, a virtual world is not only its current graphical state
but also the update sources that modify it. These include the
transform updates that move an avatar’s limbs, the slow changes
when a user edits the scene, or the fast changing of a mesh in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST’05, November 7-9, 2005, Monterey, CA, USA.
Copyright 2005 ACM 1-58113-098-1/05/0011…$5.00.

0 † University of Illinois at Urbana-Champaign, 405 N. Mathews

St, Urbana IL 61801, USA; 217-333-1000.
 †† TU Berlin, Inst. für Mathematik, Sekretariat MA 3-2, Straβe des

17. Juni 136, D-10623 Berlin, Germany; +49-30-314-29281.

response to a cloth simulation. In Myriad, scene graph
information flows through a decentralized network of reality
peers, which can be configured to meet the demands of particular
applications. Each peer in the network can filter or modify an
update to the scene graph before passing it on to other peers.

Myriad focuses on the mechanics of managing this peer-to-peer
network of virtual worlds. It builds on the work done over the last
decade in distributed and collaborative virtual environments,
especially in terms of distributed scene graphs and update
message filtering [16]. It supports asymmetrical networking,
computation, and visualization capabilities within a single
collaborative session. The filtering and transient inconsistency
that make this possible also support another important tool for
collaborative prototyping as in WorldWideCrowd, namely locally
modifying a reality peer without propagating the change to other
peers.

To create Myriad’s reality peers, we extended the open source VR
toolkit Syzygy [17]. This library contains a distributed scene
graph intended for tightly synchronized display across PC
clusters. In Syzygy, a scene graph application alters a local
(server) scene graph copy, producing a sequence of update
messages. These are sent to the cluster’s render computers, where
client scene graphs synchronize themselves with the server copy.
Under our extensions, a reality peer simply generalizes a Syzygy
scene graph.

Any computer running Python can script or interactively
manipulate the network of reality peers. The peers are thus
building blocks for constructing ever more elaborate virtual
environments. Users can create new peers, make and break
connections between them, and alter how those connections filter
update messages. Additionally, Myriad’s Python bindings can
manipulate individual scene graph nodes within a peer, even
remotely. This lets users prototype virtual worlds over a full
spectrum of scales, all from within a Python interpreter.

2. PREVIOUS WORK
VR researchers have long studied Collaborative Virtual
Environments (CVEs). In general, CVEs conceive of a virtual
world or collection of worlds connected by portals or other
mechanisms, containing defined objects. Additionally, some let
instances of a shared world have variations not present in other
copies, giving rise to subjective views [18] or local variations [9].
Differences between systems arise in what kinds of objects are
shared, how that sharing occurs, how objects are updated, and
how local variations are supported.

Some systems are domain-specific in terms of the objects and
information they share: older incarnations of NPSNET [13] are
tuned for vehicles or avatars. In contrast, projects like Continuum
[4] or CAVERNsoft [11, 15] use a general shared object system.
A middle ground is found in scene-graph-based CVEs that share
graphics information, but in a way suitable for generic tasks:
DIVE [2, 8], Repo 3D [12], Avango (formerly Avocado) [20], and
Distributed Open Inventor [9]. Since Myriad also shares data
through a general scene graph, it is most closely related to these
systems.

Other differences involve how changes propagate through the
CVE. Updates might propagate by a point-to-point protocol
(reliable or unreliable) or via multicast for scalability (DIVE [2],

MASSIVE-2 [6], NPSNET [1, 13]). In each of these cases,
multicast groups are closely tied to shared world structure. In
DIVE and MASSIVE-2, specific scene graph nodes correspond to
multicast groups, with nodes below them shared in that group. In
NPSNET, the world is regularly tiled by subworlds, each with its
own multicast group. In contrast, user applications manually
specify how CAVERNsoft’s object updates travel, e.g. over TCP,
unicast UDP, or multicast. Myriad also lets updates use any
transport mechanism, but pays special attention to point-to-point
connections and filtering thereon.

Multicast communications unfortunately present the same packet
flow to all peers, even if some want updates at a lower rate. A
peer might need reduced sharing because it renders slowly, has
less bandwidth, or has limited update-processing power. Myriad
handles such situations because they arise with very large or very
active worlds like in our WorldWideCrowd application.

MASSIVE-3 [7] also addresses these concerns somewhat. Its
large virtual worlds are composed of locales which themselves
can have multiple aspects. To improve accessibility, when a user
connects to a locale, bandwidth considerations can affect which
aspect the user sees. This coarse-grained sharing contrasts with
Myriad’s fine-grained sharing and use of connection feedback, as
described below.

 CVEs also differ in how they filter updates. MASSIVE-3 has
been augmented by an extensible message processing framework
that uses deep behaviors [16], properties of an object that control
how it processes scene graph updates. In this way the programmer
can, for instance, change the logging behavior of particular
objects, possibly enabling persistence at lesser disk access cost or
creating objects that support reliable transactions. Myriad’s
message filtering methods are described in Section 6.

Myriad’s reality peers and their connections form a general
network propagating scene graph updates. Each peer may alter or
even discard these updates. The MASSIVE systems [7, 16]
connect virtual world databases more simply, essentially with
paths in the connection graph of at most one hop (from client
database to server database). However, Myriad supports
arbitrarily long paths.

Still, remarks in [7] suggest that the architects considered erasing
the distinction between database clients and servers (making
every node a potential server), or using a tree of servers to
efficiently propagate changes via TCP. This second idea is
similar to the DIVEBONE [5], a network of special applications
that DIVE uses as an application-level tunnel for multicast traffic
through the internet. This construction in particular inspired
Myriad’s network of reality peers, though our implementation
differs in its uniformity. Each object relaying or processing scene
graph updates is a full reality peer. While Myriad does connect
peers using Syzygy’s connection broker (Section 5), this service
plays no part in their subsequent interaction.

Message processing determines the path updates take through the
CVE. For instance, a change might have to round-trip to a server
before heading back to its originating program and finally
registering its update. Even multicast-based systems have this
property, since it guarantees total ordering of world events and
thus world consistency, and Repo-3D and Distributed Open
Inventor both have it to some degree. Unfortunately this adds

latency, creates a bottleneck at the sequencer, and doubles the
bandwidth usage.

To avoid latency under these circumstances, programs like Repo-
3D [12] can create local variations in the shared world whereby
changes immediately affect the local copy before taking effect
elsewhere. This reduces interaction latency for geographically
dispersed participants.

Local variations can be more elaborate. DIVE can embed
completely different subjective views in a single world [18]: a
viewing program uses an identification string to choose which
view to display. Distributed Open Inventor also has highly
developed support for local variations [9]. In this case, unshared
subgraphs can be grafted onto a shared scene graph or different,
separately shared, scene graphs can be composed into a single
entity. Myriad’s transient inconsistency accomplishes these things
and generalizes previous work (see Section 8).

3. WORLDWIDECROWD
Reality peer networks let us construct CVEs over low-bandwidth
networks which can be experienced (or more importantly,
modified) on a wide variety of devices. In the WorldWideCrowd
application, even though the aggregate scene graph updates
exceed a WAN’s capacity, we can collaboratively edit the crowd
in real time over the WAN by sharing avatar geometry and

positions but not their motions. Instead each site can separately
generate crowd motions, or motions of small sets of avatars can
be shared, with the sharing dynamically controllable. This
methodology also applies to other system bottlenecks, like those
confronted when using underpowered (CPU-bound) displays like
laptops and PDAs.

In WorldWideCrowd, we edited a shared world containing 300
segmented avatars. The entire crowd could not run on a single
computer because of bottlenecks in processing scene graph
updates and sending them over the network. Consequently, each
of six crowd pieces ran within a reality peer on a different
computer (a simulation cluster). For high-end visualization, there
were two PC cluster displays, a 3x2 video wall and a six-sided
CAVE [3] (Figure 2). The video wall was driven by a motley
assortment of PCs, mostly 1 GHz Pentium-IIIs with GeForce 2
graphics cards.

Switched 100 Mbps Ethernet connected these resources, with 1
Gbps within each visualization cluster. In addition, a workstation
near the video wall and a wireless laptop near the CAVE let users
interactively change the CVE from the Python interpreter. Inside
the CAVE, a participant navigated the world in standard VR
fashion; another participant panned and zoomed the video wall
from a desktop interface. Finally, a remote user manipulated the
CVE over an 800-mile 10 Mbps link.

 PC-Cluster CAVE

Projector

Video

Visualization
Cluster

1 Gbps

Wireless

Collaboration
Laptop

Synchronizing
Peer

100 Mbps Simulation
Cluster

Collaboration
Workstation

WAN Site

100 Mbps

Visualization
Cluster

Switched
100 Mbps
many-to-
many
connection

 10 Mbps

Collaboration
Workstation

Video Wall

 Video

Figure 2. WorldWideCrowd: The validation configuration.

The video wall provided an overhead crowd view. Due to the
variety of PCs powering its displays, OpenGL buffer swaps were
not synchronized. When the crowd uniformly covered all six
displays, frame rates were 10 to 25 fps, and the visualization
cluster processed about 80,000 scene graph updates per second.
This was sustained while panning across the scene and zooming
the camera in and out, as demonstrated in the accompanying
video. The overall update rate was limited chiefly by the video
cards and secondarily by the 100 Mbps link between the video
wall and the simulation cluster.

Figure 3. WorldWideCrowd: Two walls of the

6-sided PC cluster CAVE.

A cluster of 6 PCs, with genlocked video cards for active stereo,
drove the six-sided CAVE. This let users navigate through the
crowd at ground level. Here, for best visual quality, the buffer
swaps on the wall displays were synchronized, and a special
reality peer (a synchronizing peer) mirrored its scene graph state
in each display. While the CAVE graphics cards were more
powerful than those in the video wall, they were still a bottleneck,
running at about 24 stereo frames per second. The synchronizing
peer consumed about 24,000 updates per second, much less than
that produced by the whole crowd due to motion culling. If we
count updates to the 6 walls and the synchronizing peer
separately, the cluster processed about 165,000 scene graph
updates per second.

For the accompanying video, we also displayed the ground-level
VR view on a 3x2 video wall, using a synchronizing peer. The
video wall’s increased view frustum culling resulted in about 40
monoscopic fps (depending on the precise point of view), even
with three-year-old video cards. Again, the graphics cards and not
the networking or update processing limited the frame rate.

The CAVE, the video wall, and the simulation cluster produced
and exchanged the vast majority of scene graph updates. The total
traffic for all reality peers within the core system was about
600,000 updates per second, with the CAVE cluster accounting
for 165,000, the simulation computers 360,000, and the video
wall 80,000.

Under some circumstances, reality peers outside the core
described above would send avatar motion information into the
system. For instance, users gave a particular avatar (or even a
whole set of avatars) different motions than those shared globally.
This local variation was accomplished by running a reality peer
that streamed the desired clips, connecting it to the desired
display peers, and turning off the transmission of avatar limb
updates from the core simulators. Since this new motion was not
transmitted globally, it did not increase overall network usage. If
the user liked the new motion, they easily pushed it into the core
simulation for others to see.

This same construction benefits CVEs which include a slow
network link. In WorldWideCrowd, the simulation cluster’s
avatar animation programs choose motion clips based on the
contents of special scene graph info nodes. Thus, if all data except
the motion streaming is shared across the slow link, then two
simulation clusters, one on each side of the slow link, can drive
their respective crowds. Even if a collaborator over a WAN
cannot stream the full crowd animation, he can certainly share
each avatar’s motion clip name, as embedded in an info node, and
thus influence both simulation clusters.

In our test of WorldWideCrowd, in addition to trying different
motion clips, users changed avatar geometry, even over running
motions, either in the globally shared world or in their own local
variations. Avatar geometry in a given reality peer was changed
either by merging geometry from a file through that peer’s RPC
interface, or by directly manipulating its scene graph from the
Python prompt. If users liked the avatar’s new appearance, they
could push it into the globally shared world, updating the other
sites. If not, they could restore the old appearance from the shared
world.

Figure 4. Avatar Manipulation.

The users moved the crowd’s avatars by manipulating transform
nodes inside the peers. As with other operations, changes in
avatar position could be either local or shared, with new local
changes able to become shared or to revert to the current shared
state. In order to move avatars, users worked from the Python
interpreter, getting local copies of the relevant transform nodes.
From this point, users arranged the avatars with scripts as well as
6DOF input devices (Figure 4). In the second case, a manipulator
object connected a transform node to the input device input and

subsequently coordinated changing the avatar’s position,
orientation, and scale.

4. MYRIAD SCENE GRAPH
Each reality peer contains a Syzygy scene graph, whose node
types correspond to OpenGL commands. Nodes store geometry in
a vertex array style, and can specify 3D transformations, texture
maps, OpenGL materials, etc. [17]. Myriad extends Syzygy by
adding an info node which stores a string and can add semantics
to a scene graph, much like constructions in [7] and [8]. Each
node has an ID, unique in the context of its owning scene graph.
When an application executes a node method, it generates update
messages, which the scene graph routes using this ID. Each node
also has a name, possibly not unique. As shown below, node
names help construct the reality maps between nodes in different
peers.

Myriad adds a new property to all Syzygy scene graph nodes:
sharing level. Its value is one of transient, stable-optional, or
stable-required. The application marks a node as transient if its
value changes rapidly over time; stable-optional if its value
remains more or less fixed but is not critical to the proper
functioning of the application; and stable-required if its value is
critical. A node’s sharing level affects how reality maps treat it
(see Section 6) and how its updates are dynamically filtered
before propagating to connected peers (see Section 7). Nodes with
transient sharing level are called transient nodes.

5. PEER-TO-PEER CONNECTIVITY
When a reality peer starts, it registers a service with a connection
broker provided by Syzygy. This broker gives the peer a unique
ID for subsequent processing of the update stream passing
through it. Other peers can query the broker’s service registry,
retrieve a list of all reality peers in the peer network, choose a
remote peer by name, get its IP address and port, and then connect
directly to it.

Each reality peer, then, connects to other peers. It listens for
update messages on its various connections, filters them, and then
propagates them. While arbitrarily complex networks are
possible, several simple constructions illustrate important Myriad
features: push peers, pull peers, feedback peers, and shadow
peers. WorldWideCrowd uses all of these types.

A pull peer connects to a single remote peer and synchronizes its
scene graph with a subgraph contained in the remote peer.
Thereafter, it receives updates from the nodes in the remote
subgraph but does not send any of its own. In WorldWideCrowd,
this lets us build a new crowd that tracks the evolution of an
existing one but within which we can make local changes, like
adding new avatars, without modifying the original. The pull peer
might even elect to only receive updates from certain remote
scene graph nodes. For instance, ignoring all updates from
transient nodes would drastically decrease its bandwidth
requirements.

A push peer connects to remote peer(s) and synchronizes its own
scene graph with a subgraph in each remote peer, afterwards
sending updates but not receiving them. So the push peer affects
the remote peers without being affected itself. In
WorldWideCrowd, the crowd animation programs embed push

peers, as do navigation utilities for moving through the virtual
worlds.

A feedback peer connects to a single remote peer; synchronizing
its scene graph with a subgraph in the remote peer upon
connection, and subsequently both sends its own updates to the
remote peer and receives updates from it. In WorldWideCrowd,
feedback peers allow collaborative editing of a shared scene
graph. A shadow peer is a special kind of feedback peer that
shares only scene graph structure but not the contents of the nodes
themselves. Since it does not download geometry, a shadow peer
can quickly synchronize its scene graph structure with a remote
peer, even over a low bandwidth link. In WorldWideCrowd,
shadow peers are useful for editing scene graphs over the WAN.

To create large-scale distributed applications like
WorldWideCrowd, the reality peer network must be scriptable.
To this end, reality peers implement an RPC interface for loading
and saving scene graph information, managing connections, and
adjusting the sharing along each connection. Peers can enter the
system in different ways. A program can embed a reality peer
and, as part of its operation, alter that peer. On the other hand,
workspaces act as generic containers for reality peers, allowing
them to exist independently of other controlling programs. A
workspace can create and delete peers residing within it, and, as
with the reality peers themselves, it has an RPC interface to
control these methods remotely.

6. FINE-GRAINED SHARING
Fine-grained sharing allows control over how connected reality
peers share information, down to the level of an individual scene
graph node. This section describes its three functional
components: message filtering, reality mapping, and node
locking. These features let peers support local variations, adapt to
low-bandwidth network links, and combine with other peers to
form larger virtual worlds.

Myriad’s message filtering was inspired by recent incarnations of
MASSIVE [16], but Myriad’s filters are not properties of the
scene graph nodes themselves (like deep behaviors). Instead, they
are properties of node and peer connection pairs. Also, Myriad’s
fine-grained sharing contrasts with MASSIVE-3’s coarse-grained
locales and aspects [7], which are essentially entire scene graphs.

A reality map relates two peer scene graphs. It is stored on each
side of the peer connection, associates remote node IDs with local
ones, and determines if a given local node is mapped remotely.
Updates to a scene graph node are propagated to mapped nodes in
connected peers via a message filtering system, as outlined later
in this section. Distributed Open Inventor [9] has a similar
construct, except that its shared subgraphs have identical node
structure (only the location of the root node changes).

Consistency requirements are relaxed in Myriad, stipulating only
that if node B is a descendant of node A and both map into a
connected peer, then B’s image is also a descendant of A’s image.
This allows unmapped node insertions within either of the
corresponding (mapped) subgraphs, facilitating fine-grained local
variations. For example, a peer could locally insert a transform
node and add unshared rotational motion to an object’s shared
translational motion, or, by locally inserting new material nodes, a
peer could locally recolor a (shared) uniformly colored group of
objects.

Another important element of fine-grained sharing is node
locking, which provides an API to maintain consistency across
peers. Suppose A and B are connected peers. Peer A can take one
of its scene graph nodes and lock changes on mapped nodes in
connected peer B. Subsequently, B will only let message updates
from A change, delete, or add children to this node; this lets A
make changes deterministically. Locking is implemented
cooperatively. Any peer connected to B that holds a mapped
image of the locked node can grab the lock from A, or even
unlock it.

Given this introduction to fine-grained sharing, we describe what
happens when an update message reaches a reality peer. First,
each message stores a history of the peers it has updated; a
message revisiting an already updated peer is discarded,
preventing infinite loops. Next, the reality map associated with
the message’s incoming connection changes the update message’s
embedded node ID to the ID of the mapped local node, if any, and
discards the message if none such exists. The message is also
discarded if the newly determined destination node is locked by a
peer other than its originator. Next, a sequence of user-defined
message filters, which is set per node and peer connection pair, is
applied before the update message is finally sent to its destination
node in the local scene graph.

Figure 5. Reality mapping: The relationship between

nodes of connected scene graphs.

After updating the local node, the peer executes the following for
each outgoing connection. If the local node maps to a node in the
connected peer, and the node is transient, and it is too soon to
send a fresh update (based on the connected peer’s update rate,
see Section 7), then the message is discarded. Then another
sequence of user-defined message filters is applied, and the
message is sent if no filter discards it.

Once two peers connect, the reality map between them can be
built in two different ways. One peer can create a new copy of its
scene graph in a remote peer (but rooted at an arbitrary remote
node), or it can attempt to associate local nodes with remote ones.
In either case, the sending peer tells the receiving peer that it is
constructing a reality map and specifies a remote node to be its
root. This map has an associated sharing level that affects its
construction, node by node, based on each node’s sharing level.

The sending peer starts at a specified local node, traversing the
scene graph below it. At each node, it sends a node creation

message and, if the node’s sharing level is greater than or equal to
the sharing level specified for the map, a node state serialization
message as well. Inside the receiving peer, the node creation
messages extend the reality mapping, either by creating new
nodes (as when building a copy) or by trying to associate the
sending peer’s node with an existing node in the receiving peer.

Consider the case where existing remote nodes (on the receiving
peer) are associated with local ones (on the sending peer) if
possible. The node creation message contains the ID of the parent
node, the name of the new node, and the new node’s type. Upon
receipt of such a message, if the receiving peer’s current reality
map (for the given connection) cannot translate the parent ID to
that of one of its own nodes, the node creation message is
discarded. Otherwise, the receiving peer searches depth-first
below the mapped parent for an existing node with the same name
and type as the creation message. If such is found, the reality map
is extended to include this node and the creation message is
discarded; otherwise, a new node is created as a child of the
mapped parent and the reality map (on the receiving peer) is
updated. Either way, a message returns to the sending peer with
the newly created extension for the sending peer’s reality map. As
constructed, reality maps automatically extend themselves over
time, with new children of mapped nodes in one peer making new
(mapped) nodes in connected peers.

The reality mapping algorithm depends on nodes having only
unique IDs, not unique names, so the names can encode useful
structural information. For instance, the avatar skeleton used in
WorldWideCrowd uses a standard set of node names, making it
easy to associate an avatar in one peer to an avatar in another via
this mapping process. Together with reality mapping, this
standardization lets WorldWideCrowd users replace any avatar
body by any other embedded in another peer.

As described here, reality maps are a general concept with several
useful properties in addition to supporting local variations. They
let the scene graphs within a group of peers be combined inside a
single peer, thus creating larger worlds. They can also share only
a small part of a peer’s scene graph with connected peers. When
combined with message filtering, this greatly assists low-
bandwidth collaboration. In particular, since a user or application
need not decide in advance how to divide a peer’s scene graph
into sharing units (like locales), reality maps support dynamically
modifiable sharing, which can limit shared data to precisely the
area of interest at any given moment.

7. PEER CONNECTION FEEDBACK
If a group of reality peers all participate in a multicast group, all
peers see the same updates, which makes the most sense when
peers are similar. However, peer resources and capabilities might
differ substantially. For instance, peers on a LAN or a high-speed
WAN tested might have good network connectivity among
themselves but have much less bandwidth to a peer outside their
subgroup. Furthermore, peers may display their virtual worlds at
different frame rates. Under this scenario, if each peer receives
the same scene graph updates, the ones with slower update rates
waste time processing updates only needed by the faster ones.

Myriad uses feedback to adjust the message flow along peer
connections, dynamically adapting to changing peer networking
and graphics performance. Feedback messages regulate the data

transfer between Myriad’s reality peers by controlling the filtering
of scene graph updates to transient nodes (see Section 4). A
reality peer can send its preferred update rate to connected peers.
This preferred update rate might match its graphics frame rate
(which would be sent automatically), or it might explicitly throttle
incoming bandwidth, e.g. requesting only one update per second.
Each reality peer stores, per connection, the update rate requested
by the remote peer. On that connection, it sends transient node
updates only at the given rate.

If a reality peer’s primary function is rendering its scene graph,
transient node updates matter only for nodes likely to be viewed.
Consequently, the user can configure a peer to automatically test
if particular subgraphs of its scene graph are “near” the viewing
frustum, where the proximity threshold is user-adjustable. If a
subgraph is not near enough, connected peers alter the relevant
reality maps so that they stop sending it transient node updates.
When a subgraph is again in proximity to the viewing frustum,
the reality maps are restored and updates from transient nodes in
connected peers will again be received.

Under this simple scheme, every transient node a user views will
have timely values, given appropriate bounds on user travel
speed. Specifically, when a subgraph enters proximity with the
viewing frustum, one message round trip to a connected peer must
occur before the subgraph will again receive updates from that
peer. Consequently, the user-defined proximity distance divided
by the maximum ping time to a connected peer gives the speed
bound. Note that Myriad itself does not enforce user speed limits
(though a particular application might). Instead, in keeping with
its overall philosophy, Myriad accepts that inconsistencies might
arise.

Connection feedback is critical for WorldWideCrowd. Without it,
our video wall could not smoothly pan the overhead crowd view,
nor could a CAVE user navigate seamlessly through the whole
crowd.

8. TRANSIENT INCONSISTENCY
We treat consistency as a local property of connections between
peers, rather than a global property of the whole peer network.
Consider two subgraphs (one in each of two connected reality
peers) mapped onto each other by the connection’s reality map.
We call them consistent if they have identical structure and all
pairs of mapped non-transient nodes have the same values. We
call a connection consistent if the full scene graphs in connected
peers are consistent.

Connected reality peers need not have consistent scene graphs,
though configurations of reality peers may have varying degrees
of guaranteed consistency (see the discussion of locking in
Section 5). Myriad’s controlled breakdown of consistency reduces
its use of networking resources and facilitates virtual world
prototyping by allowing linked (though inconsistent) versions of a
world. On the other hand, some degree of consistency is
obviously needed for collaboration and communication.

Consider two inconsistent subgraphs in connected reality peers,
neither of which is currently being altered (except by the Myriad
system itself). A consistency process is a Myriad background task
that eventually, assuming it is sufficiently strict, makes these
subgraphs consistent. We call this effect transient inconsistency.
Myriad provides an API for launching consistency processes.

Transient inconsistency relaxes the resource requirements
imposed on a CVE by strict consistency. For instance, a
substantial though intermittent resource strain occurs when new
users join the virtual world, dubbed the late-joiner problem. In
many CVEs, all updates pause while the world state transfers
atomically to the newcomer. Even if the world state is only a few
megabytes and the LAN has 100 Mbps speed, this freezes all
viewers for a substantial fraction of a second. On a slower WAN
with frequent newcomers, usability significantly deteriorates.
While atomic state transfer ensures that all users always see the
same world, it limits scalability. By allowing gradual, non-
blocking background transfer of world state, Myriad eliminates
these delays at the cost of temporarily presenting different
pictures of the world to peers.

Myriad’s solution to the late-joiner problem uses a consistency
process and builds on its concept of reality maps. When a peer
maps part of its scene graph into another peer (transferring world
state), it does so in the background and without locking the whole
scene graph. The originating peer traverses its scene graph depth-
first. It maps nodes, transferring node state according to the map’s
sharing level (see Section 5); we call the process strict if every
node’s state is transferred. Non-strict consistency processes need
less bandwidth. For instance, if a user only needs to manipulate a
scene graph’s structure (as with shadow peers), node creation
messages suffice to map it to a remote peer and no internal node
state needs to be sent.

The application controls the mapping’s traversal rate so that state
transfer does not overload network or CPU resources. The transfer
may even be greatly prolonged without impacting usability, since
new node updates interleave with the transfer-specific updates
(“streaming VR”). During the transfer, once a node has been
mapped, its future updates are immediately sent to the connected
peer, and filtering discards updates to as yet unmapped nodes.

We now argue that inconsistencies during a strict scene graph
transfer are, in fact, transient. Suppose that the new nodes in the
target scene graph remain unaltered during the mapping (if they
change, a subsequent consistency process can reconcile them).
After the mapping finishes, unless nodes were created or deleted
in the original scene graph during the mapping, the new scene
graph must be consistent with the original. This gives a bound on
the duration of inconsistencies; i.e., the inconsistencies are
transient.

We now show node creation and deletion in the originating scene
graph are also acceptable. Myriad handles node deletion like any
other update. Suppose a node in the original peer is deleted during
the mapping. If it has already been mapped, the update message
deleting it is passed on as well, deleting the node’s image. If it has
not been mapped, the delete message is not sent to the connected
peer, which will never have a corresponding node because no
local copy now exists to map.

The scene graph transfer similarly allows interleaved node
creation. If a new child node is created before its parent has been
mapped, the message adding the child is discarded by the sending
peer’s outbound filter. Later, the consistency process will map the
parent and then the child. Otherwise, the child is created after the
parent has been mapped, and so it is immediately added in both
the local and connected peers.

Myriad solves late-joiner problem similarly to MASSIVE-3 [7],
where state transfer to the late joiner also occurs in the
background without locking the scene graph and freezing other
users. However, MASSIVE-3 sends a full scene graph to the new
user before sending new updates, whereas Myriad interleaves new
updates with the initial state transfer.

In addition to supporting incremental background transfer of
scene graph information to late-joiners, Myriad also lets
consistency processes reconcile existing inconsistent subgraphs in
connected reality peers. Once users have stopped altering the
subgraphs, the background consistency process will eventually
make them consistent. It traverses a reality peer’s scene graph and
compares it to a connected scene graph, bringing (part of) the
remote scene graph into a preset level of agreement with the first.

At its most stringent, the consistency process’s goals are: mapped
nodes on both sides of the connection have the same values; every
node has a mapped remote node; and every remote node maps to
some local node. Under these circumstances and when not
competing with user changes, an inconsistency’s lifetime is
bounded by how long the consistency process takes to traverse the
scene graph, which depends on its assigned CPU and networking
resources.

An important type of inconsistency is a local variation or
subjective view. This may be long lasting, since users specifically
create it to e.g. compare different versions of a world. These
features are supported in CVEs like Distributed Open Inventor [9]
and DIVE [18]. Myriad supports analogous constructions,
tolerating inconsistencies and providing a means to reconcile
them.

DIVE’s subjective views assume that each shared view is
simultaneously available to all participants. This single shared
world can become a bottleneck when many subjective views
exist, even for static content. Moreover, if each shared subjective
view generates many updates, these can strain the network
because they are forced into a single multicast group and sent to
every peer.

This case occurs in practice. In WorldWideCrowd, a commonly
tried local variation is animating a collection of avatars with new
motion clips not available on the simulation cluster. Since each
variation uses substantial bandwidth, it would be expensive to
transmit them all to every peer, although some sharing may be
desired between certain peers. Myriad can partition scene graph
updates so that they go only where they are needed, reducing
required bandwidth.

Also, a user may want to try a local variation, change the globally
shared state if it succeeds, and otherwise return the world to the
globally shared state. Here the world’s division into shared and
unshared pieces changes dynamically. Myriad’s transient
inconsistency explicitly lets worlds lose and regain
synchronization like this.

9. PC CLUSTER VISUALIZATION
Many researchers have created cluster graphics solutions in the
last few years, like Chromium (formerly WireGL) [10], Cluster
Juggler [14], and Syzygy [17]. There are various cluster
visualization situations. Visual quality might be the most
important consideration, requiring all screens to display the

virtual world synchronized frame by frame. On the other hand,
synchronization might be sacrificed in order to display as much
information as possible at one time.

Figure 6. WorldWideCrowd: A smooth zoom into the

crowd.

When displays must be synchronized, the slowest graphics cards
limit the overall frame rate, though view frustum culling can
ameliorate this. Myriad’s cluster synchronization scheme routes
all update messages through a central synchronizing peer. This
peer ensures that each render PC’s drawn scene graph is identical
to the others at each frame, achieving this by synchronizing their
buffer swaps and their consumption of update messages, as in
[17]. Unfortunately, processing this many updates can create a
CPU bottleneck at the synchronizing peer. A 3 MHz Pentium-IV
processes about 400,000 scene graph updates per second, which is
similar to the update rate of the 300-avatar crowd. Network
utilization at the synchronizer is also a problem.

Consequently, the overhead view in WorldWideCrowd, which
requires maximum scalability, does not use frame by frame
synchronization. Instead, the video wall’s reality peers display

scene graph updates as they receive them. The overhead view
helps partition the drawing and message processing among the
peers, increasing each one’s potential frame rate. By reducing
inter-screen synchronization, each render PC can connect
separately to the crowd simulation peers (many-to-many) and to a
navigation controller that allows, for instance, panning the scene
back and forth. Even though the computers driving the video wall
have significantly different performance, this works well in
practice, as shown in the accompanying video’s slow zoom into
the whole 300-avatar crowd (Figure 6).

The PC cluster CAVE, however, requires a frame-synchronized
display. This critically depends on the fact that, in Myriad,
sharing is a local property of connections between peers instead
of a global property of the peers themselves. Consequently, the
synchronizing peer can just push the updates it receives to the
display peers, without regard to their origin, even while
dynamically changing its sharing with peers outside the cluster. In
contrast, sharing is a global property (of subgraphs) in Distributed
Open Inventor. There, while an application’s scene graph can be
composed using any number of separately shared and unshared
subgraphs, the overall scene graph is not transparently shareable.

10. INTERACTION VIA PYTHON
INTERPRETER
Two levels of interaction are supported in Python, both using
scripts and in the interpreter. The first involves manipulating
Myriad’s distributed system at a high level, managing
workspaces, reality peers, and their connections. A collection of
Python proxy objects for these entities lets the actual running
objects, located anywhere in the network, be manipulated using
an RPC interface. This makes it possible to set up, tear down, and
manage a distributed application like WorldWideCrowd.

The RPC interface is also useful for creating ad hoc workflows.
For instance, a user might experiment with local variations of the
scene graph contained in a particular reality peer. A Python script
can start several new peers on a collection of specified computers,
each a pull peer with respect to the original (defined in Section 5).
These new peers can then be altered to create new scene graph
versions, and, if they run on different computers, each will run
with high performance, aiding their comparison. Using the same
scripting infrastructure, the user can automate killing no longer
needed views and can also, remotely, serialize any peer’s scene
graph and save it to a file, preserving successful intermediate
prototypes.

The second level of interaction is manipulating the
Syzygy/Myriad objects themselves. We use SWIG-generated
Python wrappers for the relevant objects, such as the reality peers
and the nodes their scene graphs contain. With the resulting
Python modules, these objects can be created at a Python prompt
or called from a Python script. In this way, a user can, for
instance, start a reality peer from a Python prompt and connect it
as a feedback peer (see Section 5) to another peer. The user can
then alter the remote peer’s nodes by changing mapped nodes in
the local one, all from the Python prompt, encouraging free-form
experimentation.

Each scene graph node’s full C++ interface is available from
Python. The user can set material properties, alter lighting, change
transform matrices, and even move individual points within

triangle meshes. The Python bindings let users connect 6DOF
input devices to transform nodes in local peers, with special
manipulator objects forming the bridge and providing a
rudimentary interface for the interaction (Figure 4). Since the
local peers can affect remote ones, any transform node in the peer
network can be manipulated in this way.

11. FUTURE WORK
This work can be extended in many ways. First and foremost, we
could explore system performance on modern hardware. For
instance, experiments indicate that two 3 GHz Pentium computers
with recent GeForce FX graphics cards can transfer and display a
50-avatar crowd over a 100 Mbps link at 40 fps, processing
40,000 scene graph updates per second on the display end. We
could measure performance on a modern 6-node display cluster
connected by a gigabit switch to a modern 6-node compute
cluster. On such hardware, Myriad might animate 1200 avatars at
interactive frame rates.

Furthermore, while the Myriad applications described in this
paper are fairly large, comprising 22 computers for the full
WorldWideCrowd demo, we have yet to see how Myriad scales to
hundreds or thousands of computers. Such a system would
harness supercomputer-level power when rendering and driving
virtual worlds. This leads to a potential practical use of Myriad:
real-time visualization and collaborative prototyping of large,
data-intensive worlds for the movie industry.

Optimizing the underlying scene graph could significantly
increase rendering speed. Vertex programs running on
programmable GPUs might accelerate deep scene graph traversals
like those associated with segmented avatars. Furthermore,
Myriad uses overly general scene graph updates in some cases,
sending a 4x4 matrix to control each avatar bone instead of only
three Euler angles. The latter approach would reduce bandwidth,
but it might increase computation when reconstituting the rotation
matrix for OpenGL. Experiments would help in understanding
these trade-offs.

Myriad’s high-quality cluster rendering, which features frame-by-
frame synchronized scene graphs, could also be improved.
Currently a single synchronizing peer guarantees consistency of
each set of cluster-rendered frames. This potential network and
computational bottleneck is removed if we let multiple data
sources independently (and even dynamically) synchronize and
desynchronize with the cluster rendering PCs. The difficulty
comes from coordinating the already synchronized video frames
from the PC cluster with the data sources as they come and go.
Note that conventional parallel programming APIs like MPI fix
synchronization groups at their creation.

Finally, the API seen by developers can always be refined. The
underlying scene graph API comes from Syzygy and is relatively
mature, but the Myriad-specific APIs for manipulating
connections between reality peers are still evolving. Relative to
other CVE systems, Myriad exposes additional complexity in its
ability to make fine manipulations of the peer network, and the
best methods for managing that complexity in a wide range of
situations are still unknown.

The software described in this paper is open source and is
available at http://www.isl.uiuc.edu, along with all of the data
files necessary to reproduce our experiments.

12. REFERENCES
[1] Capps, M., McGregor, D., Brutzman, D., and Zyda, M. 2000.

NPSNET-V: A New Beginning for Dynamically Extensible
Virtual Environments, IEEE Computer Graphics and
Applications, 20, 5, 12-15.

[2] Carlsson, C. and Hagsand, O. 1993. DIVE- A Platform for
Multi-User Virtual Environments, Computers & Graphics,
17, 6, 663-669.

[3] Cruz-Neira, C., Sandin, D., and DeFanti, T. 1993. Surround-
Screen Projection-Based Virtual Reality: The Design and
Implementation of the CAVE. Computer Graphics, ACM
SIGGRAPH 1993, 135-142

[4] Dang Tran, F., Deslaugiers, M., Gerodolle, A., Hazard, L.,
and Rivierre, N. 2002. An Open Middleware System for
Large-scale Networked Virtual Environments, In Proc. IEEE
Virtual Reality 2002, 22-29.

[5] Frecon, E., Greenhalgh, C., and Stenius, M. 1999. The
DIVEBONE- An Application-Level Network Architecture for
Internet-Based CVEs. In Proc. VRST 1999, 58-65.

[6] Greenhalgh, C.M. 1998. Awareness Management in the
MASSIVE Systems, Distributed Systems Engineering, 5, 3,
129-137.

[7] Greenhalgh, C., Purbrick, J., and Snowdon, D. 2000. Inside
MASSIVE-3: Flexible Support for Data Consistency and
World Structuring, In Proc. CVE 2000, 119-127.

[8] Hangsand, O. 1996. Interactive Multiuser VEs in the DIVE
System, IEEE Multimedia, 3, 1, 30-39.

[9] Hesina, G., Schmalstieg, D., Fuhrman, A., and Purgathofer,
W. 1999. Distributed Open Inventor: A Practical Approach
to Distributed 3D Graphics. In Proc. VRST 1999, 74-81.

[10] Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M.,
and Hanrahan, P. WireGL: A Scalable Graphics System for
Clusters. Computer Graphics, ACM SIGGRAPH 2001:129-
140.

[11] Leigh, J., Johnson, A., and DeFanti, T. 1997. CAVERN: A
Distributed Architecture for Supporting Scalable Persistence
and Interoperability in Collaborative Virtual Environments,
Journal of Virtual Reality Research, Development, and
Applications, 2, 2, 217-237.

[12] MacIntyre, B. and Feiner, S. 1998. A distributed 3D
graphics library. In Proc. ACM SIGGRAPH 1998, ACM
Press / ACM SIGGRAPH, 361-370.

[13] Macedonia, M., Zyda, M., Pratt, D., Barham, P., and
Zeswitz, S. 1994. NPSNET : A Network Software
Acrhitecture for Large-Scale Virtual Environments,
Presence, 3, 4, 265-287.

[14] Olson, E. 2002. Cluster Juggler – PC Cluster Virtual
Reality. M.Sc. thesis, Iowa State University.

[15] Park, K., Cho, Y., Krishnaprasad, N., Scharver, C., Lewis,
M., Leigh, J., and Johnson, A. 2000. CAVERNsoft G2 : A
Toolkit for High Performance Tele-Immersive Collaboration,
In Proc. ACM Symposium on Virtual Reality Software and
Technology 2000, 8-15.

[16] Purbrick, J. and Greenhalgh, C. 2002. An Extensible Event-
Based Infrastruture for Networked Virtual Worlds, In Proc.
IEEE Virtual Reality 2002, 15-21.

[17] Schaeffer, B. and Goudeseune, C. 2003. Syzygy: Native PC
Cluster VR, In Proc. IEEE Virtual Reality 2003, 15-22.

[18] Smith, G. 1996. Cooperative Virtual Environments: Lessons
From 2D Multi User Interfaces, in Computer Supported
Cooperative Work ’96, 390-398.

[19] Snowdon, D., Greenhalgh, C., and Benford, S. 1995. What
You See is Not What I See: Subjectivity in Virtual
Environments, In Proc. Framework for Immersive Virtual
Environmments – FIVE ’95, London.

[20] Tramberend, H. 1999. Avocado: a distributed virtual reality
framework. In Proc. IEEE Virtual Reality 1999, 14-21.

	INTRODUCTION
	PREVIOUS WORK
	WORLDWIDECROWD
	MYRIAD SCENE GRAPH
	PEER-TO-PEER CONNECTIVITY
	FINE-GRAINED SHARING
	PEER CONNECTION FEEDBACK
	TRANSIENT INCONSISTENCY
	PC CLUSTER VISUALIZATION
	INTERACTION VIA PYTHON INTERPRETER
	FUTURE WORK
	REFERENCES

