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ABSTRACT 
Distributed scene graphs are important in virtual reality, both in 
collaborative virtual environments and in cluster rendering. In 
Myriad, individual scene graphs form a peer-to-peer network 
whose connections filter scene graph updates and create flexible 
relationships between scene graph nodes in the various peers. 
Modern scalable visualization systems often feature high 
intracluster throughput, but collaborative virtual environments 
(VEs) over a WAN share data at much lower rates, complicating 
the use of one scene graph system across the whole application. 
To avoid these difficulties, Myriad uses fine-grained sharing, 
whereby sharing properties of individual scene graph nodes can 
be dynamically changed from C++ and Python, and transient 
inconsistency, which relaxes resource requirements in 
collaborative VEs. A test application, WorldWideCrowd, 
implements these methods to demonstrate collaborative 
prototyping of a 300-avatar crowd animation viewed on two PC-
cluster displays and edited on low-powered laptops, desktops, and 
even over a WAN. 

Categories and Subject Descriptors  
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism – virtual reality 
 
General Terms 
Performance, design. 
 
Keywords 
Virtual environments, PC cluster, peer-to-peer. 

1. INTRODUCTION 
Myriad achieves scalability for collaborative virtual worlds by (1) 
peer-to-peer connectivity using point-to-point communications, 
(2) fine-grained sharing controllable down to the level of an 
individual scene graph node, (3) transient inconsistency, (4) self-
regulating feedback along connections between peers, and (5) PC 
cluster visualization.  

We call each scene graph, along with its network connections and 
machinery for filtering update messages, a reality peer. It is 
implemented as a C++ object.  Reality peers are analogous to 

constructions in other distributed VR systems such as locales [7] 
or worlds [2].  A reality map filters messages on each end of the 
connection between reality peers, enabling Myriad’s fine-grained 
sharing (see Section 6). The reality peers in a given network need 
not all have the same contents. Each might hold only part of a 
larger environment, different versions of the same environment, 
or partially shared versions of a single environment. All of these 
conditions create inconsistency. However, Myriad provides an 
API by which the system and its users can manage inconsistency, 
both creating and destroying it. Since this inconsistency is 
tolerable, correctable, and even sometimes desirable, we say that 
Myriad has transient inconsistency. 

These concepts are explored in WorldWideCrowd, a collaborative 
prototyping application for assembling avatar mobs. Our test case 
uses 3000avatars, each with 20 bones animated by 60 frame per 
second (fps) motion-capture clips. Within the reality peers hosting 
the mob’s pieces, the avatar motions generate 360,000 scene 
graph updates per second. In the current unoptimized system, 
each bone update creates a separate message containing a 4x4 
matrix, about 100 bytes including the message header. To view, 
navigate, and collaboratively edit this scene over low bandwidth 
WAN connections requires all of Myriad’s features.  

 
Figure 1.  A VR view of Cubist-like segmented avatars in 

the WorldWideCrowd prototyper. 
 

In general, a virtual world is not only its current graphical state 
but also the update sources that modify it.  These include the 
transform updates that move an avatar’s limbs, the slow changes 
when a user edits the scene, or the fast changing of a mesh in 
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response to a cloth simulation. In Myriad, scene graph 
information flows through a decentralized network of reality 
peers, which can be configured to meet the demands of particular 
applications. Each peer in the network can filter or modify an 
update to the scene graph before passing it on to other peers.  

Myriad focuses on the mechanics of managing this peer-to-peer 
network of virtual worlds. It builds on the work done over the last 
decade in distributed and collaborative virtual environments, 
especially in terms of distributed scene graphs and update 
message filtering [16]. It supports asymmetrical networking, 
computation, and visualization capabilities within a single 
collaborative session. The filtering and transient inconsistency 
that make this possible also support another important tool for 
collaborative prototyping as in WorldWideCrowd, namely locally 
modifying a reality peer without propagating the change to other 
peers. 

To create Myriad’s reality peers, we extended the open source VR 
toolkit Syzygy [17]. This library contains a distributed scene 
graph intended for tightly synchronized display across PC 
clusters. In Syzygy, a scene graph application alters a local 
(server) scene graph copy, producing a sequence of update 
messages. These are sent to the cluster’s render computers, where 
client scene graphs synchronize themselves with the server copy. 
Under our extensions, a reality peer simply generalizes a Syzygy 
scene graph. 

Any computer running Python can script or interactively 
manipulate the network of reality peers. The peers are thus 
building blocks for constructing ever more elaborate virtual 
environments. Users can create new peers, make and break 
connections between them, and alter how those connections filter 
update messages. Additionally, Myriad’s Python bindings can 
manipulate individual scene graph nodes within a peer, even 
remotely. This lets users prototype virtual worlds over a full 
spectrum of scales, all from within a Python interpreter. 

2. PREVIOUS WORK 
VR researchers have long studied Collaborative Virtual 
Environments (CVEs). In general, CVEs conceive of a virtual 
world or collection of worlds connected by portals or other 
mechanisms, containing defined objects. Additionally, some let 
instances of a shared world have variations not present in other 
copies, giving rise to subjective views [18] or local variations [9]. 
Differences between systems arise in what kinds of objects are 
shared, how that sharing occurs, how objects are updated, and 
how local variations are supported.  

Some systems are domain-specific in terms of the objects and 
information they share:  older incarnations of NPSNET [13] are 
tuned for vehicles or avatars.  In contrast, projects like Continuum 
[4] or CAVERNsoft [11, 15] use a general shared object system. 
A middle ground is found in scene-graph-based CVEs that share 
graphics information, but in a way suitable for generic tasks:  
DIVE [2, 8], Repo 3D [12], Avango (formerly Avocado) [20], and 
Distributed Open Inventor [9].  Since Myriad also shares data 
through a general scene graph, it is most closely related to these 
systems.  

Other differences involve how changes propagate through the 
CVE. Updates might propagate by a point-to-point protocol 
(reliable or unreliable) or via multicast for scalability (DIVE [2], 

MASSIVE-2 [6], NPSNET [1, 13]). In each of these cases, 
multicast groups are closely tied to shared world structure. In 
DIVE and MASSIVE-2, specific scene graph nodes correspond to 
multicast groups, with nodes below them shared in that group. In 
NPSNET, the world is regularly tiled by subworlds, each with its 
own multicast group. In contrast, user applications manually 
specify how CAVERNsoft’s object updates travel, e.g. over TCP, 
unicast UDP, or multicast.  Myriad also lets updates use any 
transport mechanism, but pays special attention to point-to-point 
connections and filtering thereon.  

Multicast communications unfortunately present the same packet 
flow to all peers, even if some want updates at a lower rate.  A 
peer might need reduced sharing because it renders slowly, has 
less bandwidth, or has limited update-processing power.  Myriad 
handles such situations because they arise with very large or very 
active worlds like in our WorldWideCrowd application. 

MASSIVE-3 [7] also addresses these concerns somewhat. Its 
large virtual worlds are composed of locales which themselves 
can have multiple aspects. To improve accessibility, when a user 
connects to a locale, bandwidth considerations can affect which 
aspect the user sees. This coarse-grained sharing contrasts with 
Myriad’s fine-grained sharing and use of connection feedback, as 
described below. 

 CVEs also differ in how they filter updates. MASSIVE-3 has 
been augmented by an extensible message processing framework 
that uses deep behaviors [16], properties of an object that control 
how it processes scene graph updates. In this way the programmer 
can, for instance, change the logging behavior of particular 
objects, possibly enabling persistence at lesser disk access cost or 
creating objects that support reliable transactions. Myriad’s 
message filtering methods are described in Section 6. 

Myriad’s reality peers and their connections form a general 
network propagating scene graph updates. Each peer may alter or 
even discard these updates. The MASSIVE systems [7, 16] 
connect virtual world databases more simply, essentially with 
paths in the connection graph of at most one hop (from client 
database to server database).  However, Myriad supports 
arbitrarily long paths.  

Still, remarks in [7] suggest that the architects considered erasing 
the distinction between database clients and servers (making 
every node a potential server), or using a tree of servers to 
efficiently propagate changes via TCP.  This second idea is 
similar to the DIVEBONE [5], a network of special applications 
that DIVE uses as an application-level tunnel for multicast traffic 
through the internet. This construction in particular inspired 
Myriad’s network of reality peers, though our implementation 
differs in its uniformity. Each object relaying or processing scene 
graph updates is a full reality peer. While Myriad does connect 
peers using Syzygy’s connection broker (Section 5), this service 
plays no part in their subsequent interaction.  

Message processing determines the path updates take through the 
CVE. For instance, a change might have to round-trip to a server 
before heading back to its originating program and finally 
registering its update.  Even multicast-based systems have this 
property, since it guarantees total ordering of world events and 
thus world consistency, and Repo-3D and Distributed Open 
Inventor both have it to some degree. Unfortunately this adds 



latency, creates a bottleneck at the sequencer, and doubles the 
bandwidth usage. 

To avoid latency under these circumstances, programs like Repo-
3D [12] can create local variations in the shared world whereby 
changes immediately affect the local copy before taking effect 
elsewhere. This reduces interaction latency for geographically 
dispersed participants. 

Local variations can be more elaborate. DIVE can embed 
completely different subjective views in a single world [18]: a 
viewing program uses an identification string to choose which 
view to display. Distributed Open Inventor also has highly 
developed support for local variations [9]. In this case, unshared 
subgraphs can be grafted onto a shared scene graph or different, 
separately shared, scene graphs can be composed into a single 
entity. Myriad’s transient inconsistency accomplishes these things 
and generalizes previous work (see Section 8). 

3. WORLDWIDECROWD 
Reality peer networks let us construct CVEs over low-bandwidth 
networks which can be experienced (or more importantly, 
modified) on a wide variety of devices. In the WorldWideCrowd 
application, even though the aggregate scene graph updates 
exceed a WAN’s capacity, we can collaboratively edit the crowd 
in real time over the WAN by sharing avatar geometry and 

positions but not their motions. Instead each site can separately 
generate crowd motions, or motions of small sets of avatars can 
be shared, with the sharing dynamically controllable. This 
methodology also applies to other system bottlenecks, like those 
confronted when using underpowered (CPU-bound) displays like 
laptops and PDAs. 

In WorldWideCrowd, we edited a shared world containing 300 
segmented avatars. The entire crowd could not run on a single 
computer because of bottlenecks in processing scene graph 
updates and sending them over the network. Consequently, each 
of six crowd pieces ran within a reality peer on a different 
computer (a simulation cluster). For high-end visualization, there 
were two PC cluster displays, a 3x2 video wall and a six-sided 
CAVE [3] (Figure 2).  The video wall was driven by a motley 
assortment of PCs, mostly 1 GHz Pentium-IIIs with GeForce 2 
graphics cards.   

Switched 100 Mbps Ethernet connected these resources, with 1 
Gbps within each visualization cluster. In addition, a workstation 
near the video wall and a wireless laptop near the CAVE let users 
interactively change the CVE from the Python interpreter. Inside 
the CAVE, a participant navigated the world in standard VR 
fashion; another participant panned and zoomed the video wall 
from a desktop interface. Finally, a remote user manipulated the 
CVE over an 800-mile 10 Mbps link.   
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Figure 2. WorldWideCrowd: The validation configuration. 



The video wall provided an overhead crowd view. Due to the 
variety of PCs powering its displays, OpenGL buffer swaps were 
not synchronized. When the crowd uniformly covered all six 
displays, frame rates were 10 to 25 fps, and the visualization 
cluster processed about 80,000 scene graph updates per second. 
This was sustained while panning across the scene and zooming 
the camera in and out, as demonstrated in the accompanying 
video. The overall update rate was limited chiefly by the video 
cards and secondarily by the 100 Mbps link between the video 
wall and the simulation cluster. 

 
Figure 3. WorldWideCrowd: Two walls of the 

6-sided PC cluster CAVE. 

A cluster of 6 PCs, with genlocked video cards for active stereo, 
drove the six-sided CAVE.  This let users navigate through the 
crowd at ground level. Here, for best visual quality, the buffer 
swaps on the wall displays were synchronized, and a special 
reality peer (a synchronizing peer) mirrored its scene graph state 
in each display. While the CAVE graphics cards were more 
powerful than those in the video wall, they were still a bottleneck, 
running at about 24 stereo frames per second. The synchronizing 
peer consumed about 24,000 updates per second, much less than 
that produced by the whole crowd due to motion culling. If we 
count updates to the 6 walls and the synchronizing peer 
separately, the cluster processed about 165,000 scene graph 
updates per second. 

For the accompanying video, we also displayed the ground-level 
VR view on a 3x2 video wall, using a synchronizing peer. The 
video wall’s increased view frustum culling resulted in about 40 
monoscopic fps (depending on the precise point of view), even 
with three-year-old video cards. Again, the graphics cards and not 
the networking or update processing limited the frame rate. 

The CAVE, the video wall, and the simulation cluster produced 
and exchanged the vast majority of scene graph updates. The total 
traffic for all reality peers within the core system was about 
600,000 updates per second, with the CAVE cluster accounting 
for 165,000, the simulation computers 360,000, and the video 
wall 80,000.  

Under some circumstances, reality peers outside the core 
described above would send avatar motion information into the 
system. For instance, users gave a particular avatar (or even a 
whole set of avatars) different motions than those shared globally. 
This local variation was accomplished by running a reality peer 
that streamed the desired clips, connecting it to the desired 
display peers, and turning off the transmission of avatar limb 
updates from the core simulators. Since this new motion was not 
transmitted globally, it did not increase overall network usage. If 
the user liked the new motion, they easily pushed it into the core 
simulation for others to see.  

This same construction benefits CVEs which include a slow 
network link. In WorldWideCrowd, the simulation cluster’s 
avatar animation programs choose motion clips based on the 
contents of special scene graph info nodes. Thus, if all data except 
the motion streaming is shared across the slow link, then two 
simulation clusters, one on each side of the slow link, can drive 
their respective crowds. Even if a collaborator over a WAN 
cannot stream the full crowd animation, he can certainly share 
each avatar’s motion clip name, as embedded in an info node, and 
thus influence both simulation clusters. 

In our test of WorldWideCrowd, in addition to trying different 
motion clips, users changed avatar geometry, even over running 
motions, either in the globally shared world or in their own local 
variations. Avatar geometry in a given reality peer was changed 
either by merging geometry from a file through that peer’s RPC 
interface, or by directly manipulating its scene graph from the 
Python prompt. If users liked the avatar’s new appearance, they 
could push it into the globally shared world, updating the other 
sites. If not, they could restore the old appearance from the shared 
world.  

 
Figure 4. Avatar Manipulation. 

The users moved the crowd’s avatars by manipulating transform 
nodes inside the peers. As with other operations, changes in 
avatar position could be either local or shared, with new local 
changes able to become shared or to revert to the current shared 
state. In order to move avatars, users worked from the Python 
interpreter, getting local copies of the relevant transform nodes. 
From this point, users arranged the avatars with scripts as well as 
6DOF input devices (Figure 4). In the second case, a manipulator 
object connected a transform node to the input device input and 



subsequently coordinated changing the avatar’s position, 
orientation, and scale.  

4. MYRIAD SCENE GRAPH 
Each reality peer contains a Syzygy scene graph, whose node 
types correspond to OpenGL commands. Nodes store geometry in 
a vertex array style, and can specify 3D transformations, texture 
maps, OpenGL materials, etc. [17]. Myriad extends Syzygy by 
adding an info node which stores a string and can add semantics 
to a scene graph, much like constructions in [7] and [8]. Each 
node has an ID, unique in the context of its owning scene graph. 
When an application executes a node method, it generates update 
messages, which the scene graph routes using this ID. Each node 
also has a name, possibly not unique.  As shown below, node 
names help construct the reality maps between nodes in different 
peers. 

Myriad adds a new property to all Syzygy scene graph nodes: 
sharing level. Its value is one of transient, stable-optional, or 
stable-required. The application marks a node as transient if its 
value changes rapidly over time; stable-optional if its value 
remains more or less fixed but is not critical to the proper 
functioning of the application; and stable-required if its value is 
critical. A node’s sharing level affects how reality maps treat it 
(see Section 6) and how its updates are dynamically filtered 
before propagating to connected peers (see Section 7). Nodes with 
transient sharing level are called transient nodes.  

5. PEER-TO-PEER  CONNECTIVITY 
When a reality peer starts, it registers a service with a connection 
broker provided by Syzygy. This broker gives the peer a unique 
ID for subsequent processing of the update stream passing 
through it. Other peers can query the broker’s service registry, 
retrieve a list of all reality peers in the peer network, choose a 
remote peer by name, get its IP address and port, and then connect 
directly to it. 

Each reality peer, then, connects to other peers. It listens for 
update messages on its various connections, filters them, and then 
propagates them. While arbitrarily complex networks are 
possible, several simple constructions illustrate important Myriad 
features: push peers, pull peers, feedback peers, and shadow 
peers. WorldWideCrowd uses all of these types. 

A pull peer connects to a single remote peer and synchronizes its 
scene graph with a subgraph contained in the remote peer. 
Thereafter, it receives updates from the nodes in the remote 
subgraph but does not send any of its own. In WorldWideCrowd, 
this lets us build a new crowd that tracks the evolution of an 
existing one but within which we can make local changes, like 
adding new avatars, without modifying the original. The pull peer 
might even elect to only receive updates from certain remote 
scene graph nodes. For instance, ignoring all updates from 
transient nodes would drastically decrease its bandwidth 
requirements. 

A push peer connects to remote peer(s) and synchronizes its own 
scene graph with a subgraph in each remote peer, afterwards 
sending updates but not receiving them. So the push peer affects 
the remote peers without being affected itself. In 
WorldWideCrowd, the crowd animation programs embed push 

peers, as do navigation utilities for moving through the virtual 
worlds.  

A feedback peer connects to a single remote peer; synchronizing 
its scene graph with a subgraph in the remote peer upon 
connection, and subsequently both sends its own updates to the 
remote peer and receives updates from it. In WorldWideCrowd, 
feedback peers allow collaborative editing of a shared scene 
graph. A shadow peer is a special kind of feedback peer that 
shares only scene graph structure but not the contents of the nodes 
themselves. Since it does not download geometry, a shadow peer 
can quickly synchronize its scene graph structure with a remote 
peer, even over a low bandwidth link. In WorldWideCrowd, 
shadow peers are useful for editing scene graphs over the WAN. 

To create large-scale distributed applications like 
WorldWideCrowd, the reality peer network must be scriptable. 
To this end, reality peers implement an RPC interface for loading 
and saving scene graph information, managing connections, and 
adjusting the sharing along each connection. Peers can enter the 
system in different ways. A program can embed a reality peer 
and, as part of its operation, alter that peer. On the other hand, 
workspaces act as generic containers for reality peers, allowing 
them to exist independently of other controlling programs. A 
workspace can create and delete peers residing within it, and, as 
with the reality peers themselves, it has an RPC interface to 
control these methods remotely. 

6. FINE-GRAINED  SHARING 
Fine-grained sharing allows control over how connected reality 
peers share information, down to the level of an individual scene 
graph node. This section describes its three functional 
components: message filtering, reality mapping, and node 
locking. These features let peers support local variations, adapt to 
low-bandwidth network links, and combine with other peers to 
form larger virtual worlds.  

Myriad’s message filtering was inspired by recent incarnations of 
MASSIVE [16], but Myriad’s filters are not properties of the 
scene graph nodes themselves (like deep behaviors). Instead, they 
are properties of node and peer connection pairs. Also, Myriad’s 
fine-grained sharing contrasts with MASSIVE-3’s coarse-grained 
locales and aspects [7], which are essentially entire scene graphs.  

A reality map relates two peer scene graphs. It is stored on each 
side of the peer connection, associates remote node IDs with local 
ones, and determines if a given local node is mapped remotely. 
Updates to a scene graph node are propagated to mapped nodes in 
connected peers via a message filtering system, as outlined later 
in this section. Distributed Open Inventor [9] has a similar 
construct, except that its shared subgraphs have identical node 
structure (only the location of the root node changes). 

Consistency requirements are relaxed in Myriad, stipulating only 
that if node B is a descendant of node A and both map into a 
connected peer, then B’s image is also a descendant of A’s image. 
This allows unmapped node insertions within either of the 
corresponding (mapped) subgraphs, facilitating fine-grained local 
variations. For example, a peer could locally insert a transform 
node and add unshared rotational motion to an object’s shared 
translational motion, or, by locally inserting new material nodes, a 
peer could locally recolor a (shared) uniformly colored group of 
objects.  



Another important element of fine-grained sharing is node 
locking, which provides an API to maintain consistency across 
peers. Suppose A and B are connected peers. Peer A can take one 
of its scene graph nodes and lock changes on mapped nodes in 
connected peer B. Subsequently, B will only let message updates 
from A change, delete, or add children to this node; this lets A 
make changes deterministically. Locking is implemented 
cooperatively. Any peer connected to B that holds a mapped 
image of the locked node can grab the lock from A, or even 
unlock it.  

Given this introduction to fine-grained sharing, we describe what 
happens when an update message reaches a reality peer. First, 
each message stores a history of the peers it has updated; a 
message revisiting an already updated peer is discarded, 
preventing infinite loops. Next, the reality map associated with 
the message’s incoming connection changes the update message’s 
embedded node ID to the ID of the mapped local node, if any, and 
discards the message if none such exists. The message is also 
discarded if the newly determined destination node is locked by a 
peer other than its originator. Next, a sequence of user-defined 
message filters, which is set per node and peer connection pair, is 
applied before the update message is finally sent to its destination 
node in the local scene graph.  

 
Figure 5.  Reality mapping: The relationship between 

nodes of connected scene graphs. 

After updating the local node, the peer executes the following for 
each outgoing connection. If the local node maps to a node in the 
connected peer, and the node is transient, and it is too soon to 
send a fresh update (based on the connected peer’s update rate, 
see Section 7), then the message is discarded. Then another 
sequence of user-defined message filters is applied, and the 
message is sent if no filter discards it.  

Once two peers connect, the reality map between them can be 
built in two different ways. One peer can create a new copy of its 
scene graph in a remote peer (but rooted at an arbitrary remote 
node), or it can attempt to associate local nodes with remote ones. 
In either case, the sending peer tells the receiving peer that it is 
constructing a reality map and specifies a remote node to be its 
root. This map has an associated sharing level that affects its 
construction, node by node, based on each node’s sharing level.  

The sending peer starts at a specified local node, traversing the 
scene graph below it. At each node, it sends a node creation 

message and, if the node’s sharing level is greater than or equal to 
the sharing level specified for the map, a node state serialization 
message as well. Inside the receiving peer, the node creation 
messages extend the reality mapping, either by creating new 
nodes (as when building a copy) or by trying to associate the 
sending peer’s node with an existing node in the receiving peer.  

Consider the case where existing remote nodes (on the receiving 
peer) are associated with local ones (on the sending peer) if 
possible. The node creation message contains the ID of the parent 
node, the name of the new node, and the new node’s type. Upon 
receipt of such a message, if the receiving peer’s current reality 
map (for the given connection) cannot translate the parent ID to 
that of one of its own nodes, the node creation message is 
discarded. Otherwise, the receiving peer searches depth-first 
below the mapped parent for an existing node with the same name 
and type as the creation message. If such is found, the reality map 
is extended to include this node and the creation message is 
discarded; otherwise, a new node is created as a child of the 
mapped parent and the reality map (on the receiving peer) is 
updated. Either way, a message returns to the sending peer with 
the newly created extension for the sending peer’s reality map. As 
constructed, reality maps automatically extend themselves over 
time, with new children of mapped nodes in one peer making new 
(mapped) nodes in connected peers.  

The reality mapping algorithm depends on nodes having only 
unique IDs, not unique names, so the names can encode useful 
structural information. For instance, the avatar skeleton used in 
WorldWideCrowd uses a standard set of node names, making it 
easy to associate an avatar in one peer to an avatar in another via 
this mapping process. Together with reality mapping, this 
standardization lets WorldWideCrowd users replace any avatar 
body by any other embedded in another peer. 

As described here, reality maps are a general concept with several 
useful properties in addition to supporting local variations. They 
let the scene graphs within a group of peers be combined inside a 
single peer, thus creating larger worlds. They can also share only 
a small part of a peer’s scene graph with connected peers. When 
combined with message filtering, this greatly assists low-
bandwidth collaboration. In particular, since a user or application 
need not decide in advance how to divide a peer’s scene graph 
into sharing units (like locales), reality maps support dynamically 
modifiable sharing, which can limit shared data to precisely the 
area of interest at any given moment.  

7. PEER CONNECTION FEEDBACK 
If a group of reality peers all participate in a multicast group, all 
peers see the same updates, which makes the most sense when 
peers are similar. However, peer resources and capabilities might 
differ substantially. For instance, peers on a LAN or a high-speed 
WAN tested might have good network connectivity among 
themselves but have much less bandwidth to a peer outside their 
subgroup. Furthermore, peers may display their virtual worlds at 
different frame rates. Under this scenario, if each peer receives 
the same scene graph updates, the ones with slower update rates 
waste time processing updates only needed by the faster ones.  

Myriad uses feedback to adjust the message flow along peer 
connections, dynamically adapting to changing peer networking 
and graphics performance. Feedback messages regulate the data 



transfer between Myriad’s reality peers by controlling the filtering 
of scene graph updates to transient nodes (see Section 4). A 
reality peer can send its preferred update rate to connected peers. 
This preferred update rate might match its graphics frame rate 
(which would be sent automatically), or it might explicitly throttle 
incoming bandwidth, e.g. requesting only one update per second.  
Each reality peer stores, per connection, the update rate requested 
by the remote peer. On that connection, it sends transient node 
updates only at the given rate. 

If a reality peer’s primary function is rendering its scene graph, 
transient node updates matter only for nodes likely to be viewed. 
Consequently, the user can configure a peer to automatically test 
if particular subgraphs of its scene graph are “near” the viewing 
frustum, where the proximity threshold is user-adjustable. If a 
subgraph is not near enough, connected peers alter the relevant 
reality maps so that they stop sending it transient node updates. 
When a subgraph is again in proximity to the viewing frustum, 
the reality maps are restored and updates from transient nodes in 
connected peers will again be received.  

Under this simple scheme, every transient node a user views will 
have timely values, given appropriate bounds on user travel 
speed. Specifically, when a subgraph enters proximity with the 
viewing frustum, one message round trip to a connected peer must 
occur before the subgraph will again receive updates from that 
peer. Consequently, the user-defined proximity distance divided 
by the maximum ping time to a connected peer gives the speed 
bound. Note that Myriad itself does not enforce user speed limits 
(though a particular application might). Instead, in keeping with 
its overall philosophy, Myriad accepts that inconsistencies might 
arise. 

Connection feedback is critical for WorldWideCrowd. Without it, 
our video wall could not smoothly pan the overhead crowd view, 
nor could a CAVE user navigate seamlessly through the whole 
crowd. 

8. TRANSIENT INCONSISTENCY 
We treat consistency as a local property of connections between 
peers, rather than a global property of the whole peer network. 
Consider two subgraphs (one in each of two connected reality 
peers) mapped onto each other by the connection’s reality map. 
We call them consistent if they have identical structure and all 
pairs of mapped non-transient nodes have the same values. We 
call a connection consistent if the full scene graphs in connected 
peers are consistent. 

Connected reality peers need not have consistent scene graphs, 
though configurations of reality peers may have varying degrees 
of guaranteed consistency (see the discussion of locking in 
Section 5). Myriad’s controlled breakdown of consistency reduces 
its use of networking resources and facilitates virtual world 
prototyping by allowing linked (though inconsistent) versions of a 
world. On the other hand, some degree of consistency is 
obviously needed for collaboration and communication. 

Consider two inconsistent subgraphs in connected reality peers, 
neither of which is currently being altered (except by the Myriad 
system itself). A consistency process is a Myriad background task 
that eventually, assuming it is sufficiently strict, makes these 
subgraphs consistent. We call this effect transient inconsistency. 
Myriad provides an API for launching consistency processes.  

Transient inconsistency relaxes the resource requirements 
imposed on a CVE by strict consistency. For instance, a 
substantial though intermittent resource strain occurs when new 
users join the virtual world, dubbed the late-joiner problem. In 
many CVEs, all updates pause while the world state transfers 
atomically to the newcomer. Even if the world state is only a few 
megabytes and the LAN has 100 Mbps speed, this freezes all 
viewers for a substantial fraction of a second.  On a slower WAN 
with frequent newcomers, usability significantly deteriorates. 
While atomic state transfer ensures that all users always see the 
same world, it limits scalability. By allowing gradual, non-
blocking background transfer of world state, Myriad eliminates 
these delays at the cost of temporarily presenting different 
pictures of the world to peers.  

Myriad’s solution to the late-joiner problem uses a consistency 
process and builds on its concept of reality maps. When a peer 
maps part of its scene graph into another peer (transferring world 
state), it does so in the background and without locking the whole 
scene graph. The originating peer traverses its scene graph depth-
first. It maps nodes, transferring node state according to the map’s 
sharing level (see Section 5); we call the process strict if every 
node’s state is transferred. Non-strict consistency processes need 
less bandwidth. For instance, if a user only needs to manipulate a 
scene graph’s structure (as with shadow peers), node creation 
messages suffice to map it to a remote peer and no internal node 
state needs to be sent. 

The application controls the mapping’s traversal rate so that state 
transfer does not overload network or CPU resources. The transfer 
may even be greatly prolonged without impacting usability, since 
new node updates interleave with the transfer-specific updates 
(“streaming VR”). During the transfer, once a node has been 
mapped, its future updates are immediately sent to the connected 
peer, and filtering discards updates to as yet unmapped nodes. 

We now argue that inconsistencies during a strict scene graph 
transfer are, in fact, transient. Suppose that the new nodes in the 
target scene graph remain unaltered during the mapping (if they 
change, a subsequent consistency process can reconcile them). 
After the mapping finishes, unless nodes were created or deleted 
in the original scene graph during the mapping, the new scene 
graph must be consistent with the original.  This gives a bound on 
the duration of inconsistencies; i.e., the inconsistencies are 
transient. 

We now show node creation and deletion in the originating scene 
graph are also acceptable. Myriad handles node deletion like any 
other update. Suppose a node in the original peer is deleted during 
the mapping. If it has already been mapped, the update message 
deleting it is passed on as well, deleting the node’s image. If it has 
not been mapped, the delete message is not sent to the connected 
peer, which will never have a corresponding node because no 
local copy now exists to map. 

The scene graph transfer similarly allows interleaved node 
creation. If a new child node is created before its parent has been 
mapped, the message adding the child is discarded by the sending 
peer’s outbound filter. Later, the consistency process will map the 
parent and then the child. Otherwise, the child is created after the 
parent has been mapped, and so it is immediately added in both 
the local and connected peers.  



Myriad solves late-joiner problem similarly to MASSIVE-3 [7], 
where state transfer to the late joiner also occurs in the 
background without locking the scene graph and freezing other 
users. However, MASSIVE-3 sends a full scene graph to the new 
user before sending new updates, whereas Myriad interleaves new 
updates with the initial state transfer. 

In addition to supporting incremental background transfer of 
scene graph information to late-joiners, Myriad also lets 
consistency processes reconcile existing inconsistent subgraphs in 
connected reality peers. Once users have stopped altering the 
subgraphs, the background consistency process will eventually 
make them consistent. It traverses a reality peer’s scene graph and 
compares it to a connected scene graph, bringing (part of) the 
remote scene graph into a preset level of agreement with the first.  

At its most stringent, the consistency process’s goals are: mapped 
nodes on both sides of the connection have the same values; every 
node has a mapped remote node; and every remote node maps to 
some local node. Under these circumstances and when not 
competing with user changes, an inconsistency’s lifetime is 
bounded by how long the consistency process takes to traverse the 
scene graph, which depends on its assigned CPU and networking 
resources. 

An important type of inconsistency is a local variation or 
subjective view. This may be long lasting, since users specifically 
create it to e.g. compare different versions of a world. These 
features are supported in CVEs like Distributed Open Inventor [9] 
and DIVE [18]. Myriad supports analogous constructions, 
tolerating inconsistencies and providing a means to reconcile 
them. 

DIVE’s subjective views assume that each shared view is 
simultaneously available to all participants. This single shared 
world can become a bottleneck when many subjective views 
exist, even for static content. Moreover, if each shared subjective 
view generates many updates, these can strain the network 
because they are forced into a single multicast group and sent to 
every peer.  

This case occurs in practice. In WorldWideCrowd, a commonly 
tried local variation is animating a collection of avatars with new 
motion clips not available on the simulation cluster. Since each 
variation uses substantial bandwidth, it would be expensive to 
transmit them all to every peer, although some sharing may be 
desired between certain peers. Myriad can partition scene graph 
updates so that they go only where they are needed, reducing 
required bandwidth. 

Also, a user may want to try a local variation, change the globally 
shared state if it succeeds, and otherwise return the world to the 
globally shared state. Here the world’s division into shared and 
unshared pieces changes dynamically. Myriad’s transient 
inconsistency explicitly lets worlds lose and regain 
synchronization like this. 

9. PC CLUSTER VISUALIZATION 
Many researchers have created cluster graphics solutions in the 
last few years, like Chromium (formerly WireGL) [10], Cluster 
Juggler [14], and Syzygy [17]. There are various cluster 
visualization situations.  Visual quality might be the most 
important consideration, requiring all screens to display the 

virtual world synchronized frame by frame. On the other hand, 
synchronization might be sacrificed in order to display as much 
information as possible at one time. 

 
 

 
 

 
Figure 6.  WorldWideCrowd: A smooth zoom into the 

crowd. 

When displays must be synchronized, the slowest graphics cards 
limit the overall frame rate, though view frustum culling can 
ameliorate this. Myriad’s cluster synchronization scheme routes 
all update messages through a central synchronizing peer.  This 
peer ensures that each render PC’s drawn scene graph is identical 
to the others at each frame, achieving this by synchronizing their 
buffer swaps and their consumption of update messages, as in 
[17]. Unfortunately, processing this many updates can create a 
CPU bottleneck at the synchronizing peer.  A 3 MHz Pentium-IV 
processes about 400,000 scene graph updates per second, which is 
similar to the update rate of the 300-avatar crowd. Network 
utilization at the synchronizer is also a problem. 

Consequently, the overhead view in WorldWideCrowd, which 
requires maximum scalability, does not use frame by frame 
synchronization. Instead, the video wall’s reality peers display 



scene graph updates as they receive them. The overhead view 
helps partition the drawing and message processing among the 
peers, increasing each one’s potential frame rate. By reducing 
inter-screen synchronization, each render PC can connect 
separately to the crowd simulation peers (many-to-many) and to a 
navigation controller that allows, for instance, panning the scene 
back and forth. Even though the computers driving the video wall 
have significantly different performance, this works well in 
practice, as shown in the accompanying video’s slow zoom into 
the whole 300-avatar crowd (Figure 6). 

The PC cluster CAVE, however, requires a frame-synchronized 
display. This critically depends on the fact that, in Myriad, 
sharing is a local property of connections between peers instead 
of a global property of the peers themselves. Consequently, the 
synchronizing peer can just push the updates it receives to the 
display peers, without regard to their origin, even while 
dynamically changing its sharing with peers outside the cluster. In 
contrast, sharing is a global property (of subgraphs) in Distributed 
Open Inventor. There, while an application’s scene graph can be 
composed using any number of separately shared and unshared 
subgraphs, the overall scene graph is not transparently shareable. 

10. INTERACTION VIA PYTHON 
INTERPRETER 
Two levels of interaction are supported in Python, both using 
scripts and in the interpreter. The first involves manipulating 
Myriad’s distributed system at a high level, managing 
workspaces, reality peers, and their connections. A collection of 
Python proxy objects for these entities lets the actual running 
objects, located anywhere in the network, be manipulated using 
an RPC interface. This makes it possible to set up, tear down, and 
manage a distributed application like WorldWideCrowd. 

The RPC interface is also useful for creating ad hoc workflows. 
For instance, a user might experiment with local variations of the 
scene graph contained in a particular reality peer. A Python script 
can start several new peers on a collection of specified computers, 
each a pull peer with respect to the original (defined in Section 5). 
These new peers can then be altered to create new scene graph 
versions, and, if they run on different computers, each will run 
with high performance, aiding their comparison. Using the same 
scripting infrastructure, the user can automate killing no longer 
needed views and can also, remotely, serialize any peer’s scene 
graph and save it to a file, preserving successful intermediate 
prototypes.  

The second level of interaction is manipulating the 
Syzygy/Myriad objects themselves. We use SWIG-generated 
Python wrappers for the relevant objects, such as the reality peers 
and the nodes their scene graphs contain. With the resulting 
Python modules, these objects can be created at a Python prompt 
or called from a Python script. In this way, a user can, for 
instance, start a reality peer from a Python prompt and connect it 
as a feedback peer (see Section 5) to another peer. The user can 
then alter the remote peer’s nodes by changing mapped nodes in 
the local one, all from the Python prompt, encouraging free-form 
experimentation.  

Each scene graph node’s full C++ interface is available from 
Python. The user can set material properties, alter lighting, change 
transform matrices, and even move individual points within 

triangle meshes. The Python bindings let users connect 6DOF 
input devices to transform nodes in local peers, with special 
manipulator objects forming the bridge and providing a 
rudimentary interface for the interaction (Figure 4). Since the 
local peers can affect remote ones, any transform node in the peer 
network can be manipulated in this way.  

11. FUTURE WORK 
This work can be extended in many ways. First and foremost, we 
could explore system performance on modern hardware. For 
instance, experiments indicate that two 3 GHz Pentium computers 
with recent GeForce FX graphics cards can transfer and display a 
50-avatar crowd over a 100 Mbps link at 40 fps, processing 
40,000 scene graph updates per second on the display end. We 
could measure performance on a modern 6-node display cluster 
connected by a gigabit switch to a modern 6-node compute 
cluster. On such hardware, Myriad might animate 1200 avatars at 
interactive frame rates.  

Furthermore, while the Myriad applications described in this 
paper are fairly large, comprising 22 computers for the full 
WorldWideCrowd demo, we have yet to see how Myriad scales to 
hundreds or thousands of computers. Such a system would 
harness supercomputer-level power when rendering and driving 
virtual worlds. This leads to a potential practical use of Myriad: 
real-time visualization and collaborative prototyping of large, 
data-intensive worlds for the movie industry. 

Optimizing the underlying scene graph could significantly 
increase rendering speed. Vertex programs running on 
programmable GPUs might accelerate deep scene graph traversals 
like those associated with segmented avatars. Furthermore, 
Myriad uses overly general scene graph updates in some cases, 
sending a 4x4 matrix to control each avatar bone instead of only 
three Euler angles. The latter approach would reduce bandwidth, 
but it might increase computation when reconstituting the rotation 
matrix for OpenGL. Experiments would help in understanding 
these trade-offs.  

Myriad’s high-quality cluster rendering, which features frame-by-
frame synchronized scene graphs, could also be improved. 
Currently a single synchronizing peer guarantees consistency of 
each set of cluster-rendered frames. This potential network and 
computational bottleneck is removed if we let multiple data 
sources independently (and even dynamically) synchronize and 
desynchronize with the cluster rendering PCs. The difficulty 
comes from coordinating the already synchronized video frames 
from the PC cluster with the data sources as they come and go. 
Note that conventional parallel programming APIs like MPI fix 
synchronization groups at their creation.  

Finally, the API seen by developers can always be refined. The 
underlying scene graph API comes from Syzygy and is relatively 
mature, but the Myriad-specific APIs for manipulating 
connections between reality peers are still evolving. Relative to 
other CVE systems, Myriad exposes additional complexity in its 
ability to make fine manipulations of the peer network, and the 
best methods for managing that complexity in a wide range of 
situations are still unknown. 

The software described in this paper is open source and is 
available at http://www.isl.uiuc.edu, along with all of the data 
files necessary to reproduce our experiments. 
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